

MICROPROCESSOR OVERCURRENT and EARTH FAULT RELAY

TYPE

MC40

OPERATION MANUAL

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 1 of 34

1. General Utilization and Commissioning Directions	3
1.1 - Storage and Transportation	3
1.2 - Installation	3
1.3 - Electrical Connection	3
1.4 - Measuring Inputs and Power Supply	3
1.5 - Outputs Loading	3
1.6 - Protection Farthing	3 3
1.6 - Protection Earthing	
1.7 - Setting and Calibration	3
1.8 - Safety Protection	3
1.9 - Handling	3
1.10 - Maintenance	4
1.11 - Waste Disposal of Electrical & Electronic Equipment	4
1.12 - Fault detection and repair	4
2. General Characteristics	5
2.1 - Power Supply	5
2.2 - Operation and Algorithms	6
2.2.1 - Reference Input Values	6
2.2.2 - Input quantities	6
2.2.3 - Time Current Curves IEC (TU1029 Rev.0)	8
2.2.4 - Time Current Curves IEEE (TU1028 Rev.0)	
3. Functions and Settings (Function)	10
3.1 - T> (F49) - Thermal Image protection level	
3.1.1 - Thermal Image Curves (TU0445 Rev.0)	11
3.2 - I > (1F51) - First overcurrent protection level	12
3.3 - I>> (2F51) - Second overcurrent protection level	
3.4 - IH (3F51) - Third overcurrent protection level	13
3.4.1 – Automatic doubling or Overcurrent thresholds on current inrush	
3.5 - Io> (1F51N) - First Earth Fault protection level	14
3.6 - Io>> (2F51N) - Second Earth Fault protection level	14
3.7 - IoH (3F51N) - Third Earth Fault protection level	15
3.8 - BF (F51BF) - Breaker Failure	15
3.9 - RTD - Remote Trip	15
3.9 - I.R.F Internal Relay Failure	16
3.10 - CBMng - Close Breaker Manage	16
3.11 - Osc - Oscillographic Recording	17
3.12 - Comm - Communication Parameters	17
3.13 - LCD - Display and Buzzer operation	18
4. Logic Blocking of Functions	18
4.1 - Blocking Outputs	18
4.2 - Blocking Inputs	18
5. Output Relays	18
5. Output Inpute	10 19
6. Digital Inputs	19
8. Relay Management	20
9. Signalizations	21
10. Keyboard Buttons	21
11. Serial Communication Port	22
11.1 - Main RS485 Serial Communication Port	22
11.2 - Communication Port on Front Face Panel	23
12. Menu and Variables	24
12.2 - Real Time Measurements	24
12.2 - Meas (Instantaneous Measurements)	24
12.3 - Counter (Operation Counters)	24
12.4 - LastTrip (Event Recording)	25
12.5 - R/W Set (Programming / Reading the Relay Settings)	26
12.5.1 - CommAdd (Communication Address)	26
12.5.2 - Time/Date (Time/Date)	26
12.5.3 - RatedVal (Rated Input Values)	26
12.5.4 - Function (Functions)	27
12.6 - RelayCfg (Relay Configuration)	29
12.7 - Commands	
12.8 - Info&Ver (Firmware - Info&Version)	29
12. Kayboard Operational Disgram	30
12. Keyboard Operational Diagram	
14.1 - MS-Com Password	31
15. Maintenance	31
16. Power Frequency Insulation Test	31
17. Connection Diagram	32
18. Overall Dimensions	32
19. Direction for Pcb's Draw-Out and Plug-In	
19.1 - Draw-Out	33
19.2 - Plug-In	33
20. Electrical Characteristics	34

1. General Utilization and Commissioning Directions

Always make reference to the specific description of the product and to the Manufacturer's instruction. Carefully observe the following warnings.

1.1 - Storage and Transportation

must comply with the environmental conditions stated on the product's instruction or by the applicable IEC standards.

1.2 - Installation

must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 - Electrical Connection

must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 - Measuring Inputs and Power Supply

carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 - Outputs Loading

must be compatible with their declared performance.

1.6 - Protection Earthing

When earthing is required, carefully check its effectiveness.

1.7 - Setting and Calibration

Carefully check the proper setting of the different functions according to the configuration of the protected system, the safety regulations and the co-ordination with other equipment.

1.8 - Safety Protection

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 - Handling

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules.

The damage caused by electrostatic discharge may not be immediately apparent, but the design reliability and the long life of the product will have been reduced. The electronic circuits reduced by M.S. are completely safe from electrostatic discharge (8 kV IEC 255.22.2) when housed in their case; withdrawing the modules without proper cautions expose them to the risk of damage.

- a. Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.
- Handle the module by its front-plate, frame, or edges of the printed circuit board. Avoid touching the electronic components, printed circuit tracks or connectors.
- c. Do not pass the module to any person without first ensuring that you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- d. Place the module on an antistatic surface, or on a conducting surface which is at the same potential as yourself.
- e. Store or transport the module in a conductive bag.

More information on safe working procedures for all electronic equipment can be found in BS5783 and IEC 147-OF.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 3 of 34

1.10 - Maintenance

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

1.11 - Waste Disposal of Electrical & Electronic Equipment

(Applicable throughout the European Union and other European countries with separate collection program). This product should not be treated as household waste when you wish dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequence to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resource.

1.12 - Fault detection and repair

Internal calibrations and components should not be altered or replaced. For repair, please ask the Manufacturer or its authorized Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 4 of 34

2. General Characteristics

The MC is a very innovative and versatile line of Protective Relays which takes advantage of the long and successful experience coming from the M-Line.

The main features of the MC-Line relays are:

Compact draw-out execution for Flush Mounting or for assembly in 19" 3U chassis for 19" Rack systems.

User friendly front face with 2x8 characters LCD Display, four signal Leds, four keys for complete local management and 9-pin socket for local RS232 serial communication.

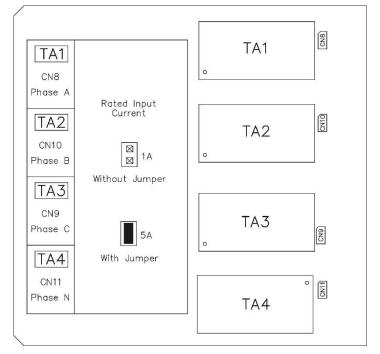
Four user programmable Output Relays. On request one of the Output Relays can be replaced by a Can Bus port for control of additional I/O modules.

Three optoisolated, self-powered Digital Inputs.

RS485 communication port (independent from the RS232 port on front panel)

Totally draw-out execution with automatic C.T. shorting device.

Input currents are supplied to 4 current transformers: measuring phase currents.


Current inputs can be 1 or 5A: selection between 1A or 5A is made by movable jumpers provided on the Relay card. (See Fig 1)

The Measuring Ranges of the different inputs respectively are:

Phase Currents : (0.1-40) In

Make electric connection in conformity with the diagram reported on relay's enclosure.

Check that input currents are same as reported on the diagram and on the test certificate.

2.1 - Power Supply

The auxiliary power is supplied by a built-in module fully isolated a self-protected.

The relay can be fitted with two different types of **power supply**:

Type 1	24V(-20%) / 110V(+15%) a.c.	24V(-20%) / 125V(+20%) d.c.
Type 2	80V(-20%) / 220V(+15%) a.c.	90V(-20%) / 250V(+20%) d.c.

Before energizing the unit check that supply voltage is within the allowed limits.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 5 of 34

2.2 - Operation and Algorithms

2.2.1 - Reference Input Values

	Display		Description	Settin	ig F	Range	Step	Unit
I1	100	Α	Rated Primary current of phase C.T.	1	-	9999	1	Α
I2	5	Α	Rated Secondary current of phase C.T.	1	-	5	1/5	Α
IN1	1	Α	Rated Primary neutral	1	-	9999	1	Α
IN2	1	Α	Rated Secondary neutral	1	-	9999	1	Α
In	100	Α	Reference primary current of the relay	1	-	9999	1	Α
Freq	50	Hz	System rated frequency	50	-	60	10	Hz
TW	60	sec	Warming-up time constant for Thermal Image	60	-	3600	1	sec
Ib	105	%In	Maximum admissible continuous overload for Thermal Image	50	-	130	0.1	%In

2.2.2 - Input quantities

2.2.2.1 - Mains Frequency (Freq)

The relay can operate either in 50Hz or 60Hz systems. The rated Mains Frequency "Freq" must be set accordingly.

2.2.2.2 - Phase Current inputs (I1)

The relay directly displays the r.m.s. value of the Phase Currents "**IA**", "**IB**", "**IC**", "**IN**" flowing in the Primary of the input Current Transformers and refers all its measurements to that value.

To make the relay properly working with any C.T., when programming the relay settings, input the value "I1" of the primary current of the phase C.Ts

The measure is not displayed below : < 5% In

2.2.2.3 - Earth Fault Current Input (IN1/IN2)

Same as for the Phase Currents, the relay directly displays the r.m.s. value of the Neutral Current flowing at the Primary of the Current Transformers.

The measure is not displayed below : < 1% On

2.2.2.4 - Algorithm of the time current curves

The Time Current Curves are generally calculated with the following equation :

(1)
$$t(I) = \begin{bmatrix} A \\ \frac{1}{|s|} \end{bmatrix} + B = K \cdot T_s + t_r$$

where:

t(I) = Actual trip time delay when the input current equals "I"

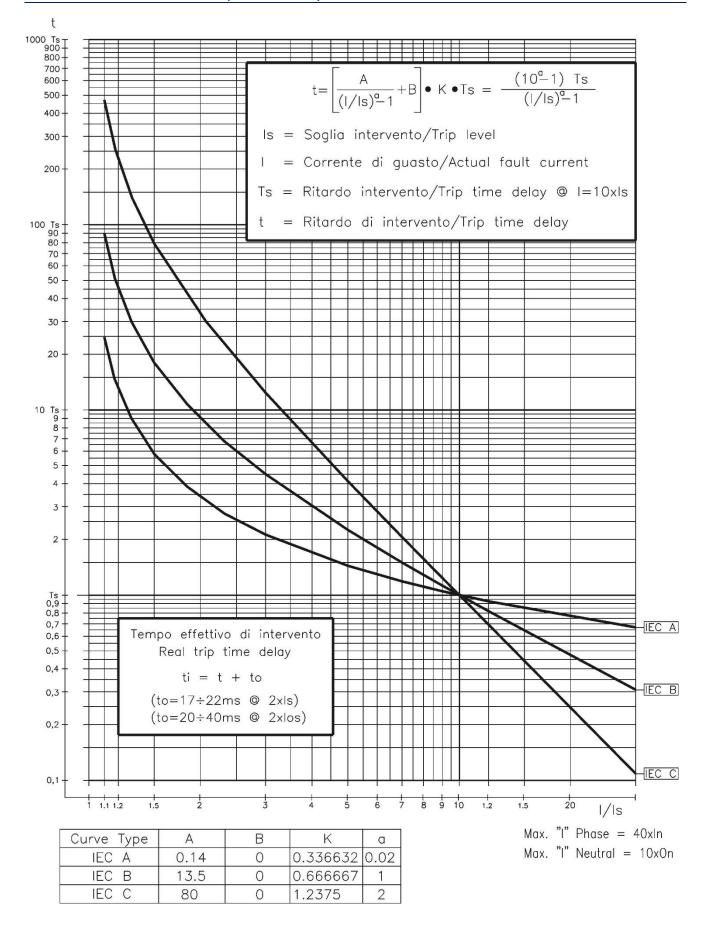
I = Maximum of the three input currents.

Is = Set minimum pick-up level

$$K = \left(\frac{A}{10^a - 1}\right)^{-1}$$

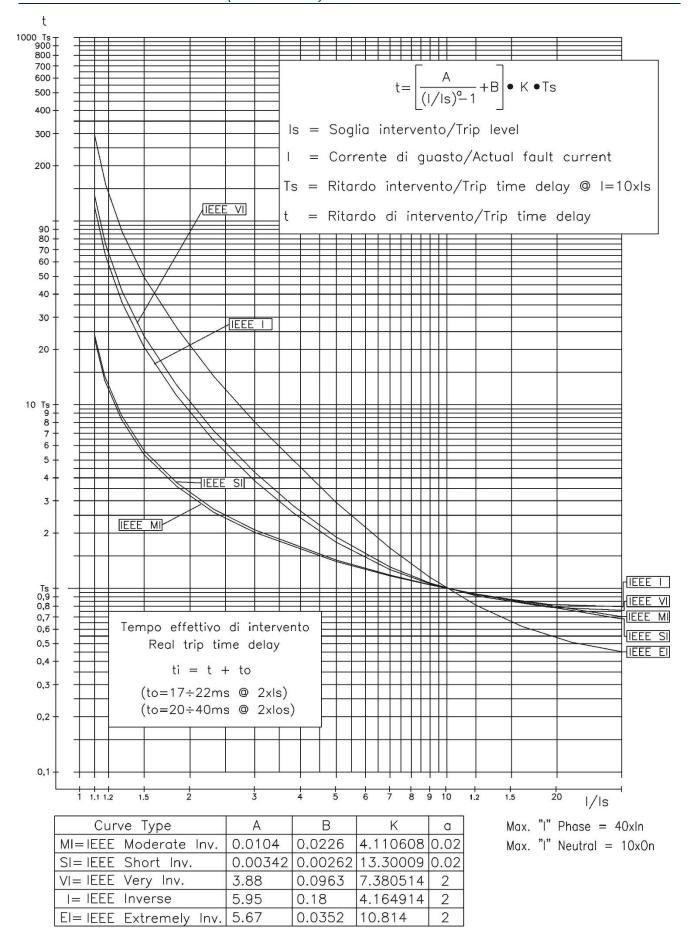
 $\mathsf{T_s} \quad = \quad \mathsf{Set \ time \ delay:} \qquad \mathsf{t(I)} = \mathsf{T_s} \quad \mathsf{when} \qquad \frac{I}{I_s} = 10$

tr = Operation time of the output relay on pick-up (7ms).


The parameters "A" and "a" have different values for the different Time Current Curves.

Curve Name	Curve Identifier	Α	В	a
IEC A Inverse	Α	0.14	0	0.02
IEC B Very Inverse	В	13.5	0	1
IEC C Extremely Inverse	С	80	0	2
IEEE Moderate Inverse	MI	0.0104	0.0226	0.02
IEEE Short Inverse	SI	0.00342	0.00262	0.02
IEEE Very Inverse	VI	3.88	0.0963	2
IEEE Inverse	I	5.95	0.18	2
IFFF Extremely Inverse	FT	5 67	0.0352	2

The maximum measuring current is "40xIn" for phase elements and "10xOn" for the neutral element.



2.2.3 - Time Current Curves IEC (TU1029 Rev.0)

2.2.4 - Time Current Curves IEEE (TU1028 Rev.0)

3. Functions and Settings (Function)

3.1 - T> (F49) - Thermal Image protection level

FuncEnab	\rightarrow	Enable		[Disable / Enable]			
Options	\rightarrow	No Param]	No Parameters			
TripLev	→ Tal	50	%Tb	(50 ÷ 110)	step	1	%Tb
	→ Tst	100	%Tb	(10 ÷ 100)	step	1	%Tb
Timers	\rightarrow	No Param]	No Parameters			

Description of variables

FuncEnab : If disable the function is disactivated.

Tal : Thermal prealarm temperature.

Tst : Reset level.

Trip when : The temperature exceeded for time "Tal".

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Led reset when : Return in normal condition

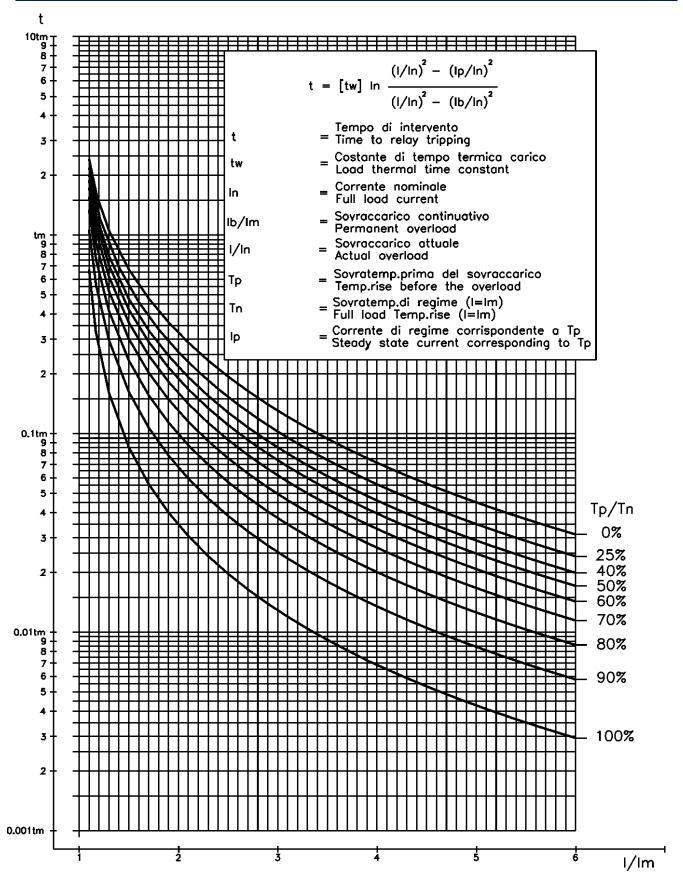
Warming-up is computed proportionally to the square of the largest phase current "I".

- Allowed overloading time (See Curve)

The trip time delay " \mathbf{t} " of the thermal element, depends on the warming-up time constant " \mathbf{tw} ", on the previous thermal status (Ip/In)², on the admissible continuous overload (Ib) and, of course, on the actual load (I)

$$t = tw \cdot \ell_n \left[\frac{(I/In)^2 - (Ip/In)^2}{(I/In)^2 - (Ib/In)^2} \right] \quad \text{where} :$$

tw	=	Warming-up time constant (60-3600) s.
I	=	Largest of the three phase currents
Ip	=	Preheating current: Steady-State Current corresponding to the thermal status existing at the moment when the current is increased to the overload value "I"
Ib	=	Continuously admissible current (50-130) %In, step 0.1%In
In	=	Rated primary current of phase C.Ts
ℓ n	=	Natural logarithm


Reset takes please when the simulated temperature drops below the programming level [Tst].

An alarm signal is issued when the computed warming exceeds the set percentage "Tal" of the Full Load temperature "Tb".

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 10 of 34

3.1.1 - Thermal Image Curves (TU0445 Rev.0)

Copyright 2009

3.2 - I> (1F51) - First overcurrent protection level

FuncEnab	\rightarrow		Enable		[Disable / Enable]				
Options	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	TCC BI Trg	D Disable Enable	,					
TripLev	\rightarrow	<i>I</i> >	0.5	In	$(0.10 \div 4)$	step	0.01	In	
Timers	\rightarrow	tI>	2.00	S	$(0.05 \div 60)$	step	0.01	S	

Description of variables

If disable the function is disactivated **FuncEnab** TCC Time current curves D Independent Definite Time Α IEC A Inverse В IEC B Very Inverse CIEC C Extremely Inverse MI IEEE Moderate Inverse Curve IEEE Very Inverse Curve VIIEEE Inverse Curve Τ IEEE Extremely Inverse Curve ΕI SI = IEEE Short Inverse Curve Operation controlled by Blocking Digital Input ΒI Function operation triggers the oscillographic wave form capture Trg (see § Oscillographic Recording) I>Minimum phase current pick-up level (limited to 40 times In) tI> Trip time delay

Trip when : The current trip level is exceeded for time "tI>".

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Function reset when : The current drop below 95% I>.

Led reset when : push-button is pressed

3.3 - I>> (2F51) - Second overcurrent protection level

FuncEnab	\rightarrow		Enable		[Disable / Enable]			
Options	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	BI 2xI Trg	Disable Disable Enable		[Disable / Enable] [Disable / Enable] [Disable / Enable]			
TripLev	\rightarrow	<i>I>></i>	2.00	In	(0.50 ÷ 40)	step	0.01	In
Timers	$\stackrel{\rightarrow}{\rightarrow}$	tI>> t2xI	1.00 0.10	s s	(0.05 ÷ 60) (0.02 ÷ 9.99)	step step	0.01 0.01	s s

Description of variables

FuncEnab	:	If disable the function is disactivated
BI	:	Operation controlled by Blocking Digital Input
2xI	:	Automatic threshold doubling on inrush
Trg	:	Function operation triggers the oscillographic wave form capture (see § Oscillographic Recording)
<i>I>></i>	:	Minimum phase current pick-up level (limited to 40 times In)
<i>tI>></i>	:	Trip time delay
t2xI	:	Trip time delay

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 12 of 34

3.4 - IH (3F51) - Third overcurrent protection level

FuncEnab	\rightarrow		Enable	[Disable / Enable]			
Options	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	BI 2xI Trg	Disable Enable Enable	[Disable / Enable] [Disable / Enable] [Disable / Enable]			
TripLev	\rightarrow	IH	5 In	(0.5 ÷ 40)	step	0.01	In
Timers	$\overset{\rightarrow}{\longrightarrow}$	tIH t2xI	0.05 s 0.10 s	(0.05 ÷ 60) (0.02 ÷ 9.99)	step step	0.01 0.01	s s

Description of variables

FuncEnab : If disable the function is disactivated

BI : Operation controlled by Blocking Digital Input

2xI : Automatic threshold doubling on inrush

Trg : Function operation triggers the oscillographic wave form capture (see § Oscillographic Recording)

IH : Minimum phase current pick-up level (limited to 40 times In)

t2xI : Trip time delay

tIH : Trip time delay

Trip when : The current trip level is exceeded for time "tIH".

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Function reset when : The current drop below 95% IH.

Led reset when : push-button is pressed

3.4.1 - Automatic doubling or Overcurrent thresholds on current inrush

For some of the phase Overcurrent functions it is possible to have the set trip level [Is] automatically doubled when strong inrush current is detected.

If at circuit Breaker switch-on (i.e., when the input current rises from zero to a minimum measurable value) the current increases from 0 to 1.5 times the rated value [In] in less than 60ms, the set minimum pick-up level [Is] is dynamically doubled ([Is] \rightarrow [2Is]) and keeps this value until the input current drops below 1.25xIn or the set time [t2xI] has elapsed.

This functionality is very useful to avoid spurious tripping of the instantaneous or short-time delayed Overcurrent elements that could be experienced at switch-on of reactive loads like Transformer or Capacitors.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 13 of 34

3.5 - Io> (1F51N) - First Earth Fault protection level

FuncEnab	\rightarrow		Enable		[Disable / Enable]			
Options	\rightarrow	TCC BI Trg	D Disable Enable]	[D / A / B / C / I / VI / EI / MI / SI] [Disable / Enable] [Disable / Enable]			
TripLev	\rightarrow	Io>	0.10	Ion	(0.01 ÷ 4)	step	0.01	Ion
Timers	\rightarrow	tIo>	2.00	s	(0.05 ÷ 60)	step	0.01	S

Description of variables

FuncEnab : If disable the function is disactivated : Time current curves TCC = Independent Definite Time D = IEC A Inverse Α = IEC B Very Inverse В C= IEC C Extremely Inverse ΜI = IEEE Moderate Inverse Curve = IEEE Very Inverse Curve VI= IEEE Inverse Curve Τ ΕI = IEEE Extremely Inverse Curve = IEEE Short Inverse Curve SI BI: Operation controlled by Blocking Digital Input : Function operation triggers the oscillographic wave form capture Trg (see § Oscillographic Recording) Io> Minimum Zero Sequence Residual Current Pick-up level tIo> : Trip time delay

Trip when : The current trip level is exceeded for time "tIo>".

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Function reset when : The current drop below 95% Io>.

Led reset when : push-button is pressed

3.6 - Io>> (2F51N) - Second Earth Fault protection level

FuncEnab	\rightarrow	Enable		[Disable / Enable]			
Options	→ BI → Trg	Disable Enable]	[Disable / Enable] [Disable / Enable]			
TripLev	→ Io>>	0.50	Ion	(0.01 ÷ 9.99)	step	0.01	Ion
Timers	→ <i>tIo</i> >>	1.00	S	$(0.05 \div 60)$	step	0.01	s

Description of variables

FuncEnab : If disable the function is disactivated

BI : Operation controlled by Blocking Digital Input

Trg : Function operation triggers the oscillographic wave form capture

(see § Oscillographic Recording)

Io>> : Minimum Zero Sequence Residual Current Pick-up level

tIo>> : Trip time delay

Trip when : The current trip level is exceeded for time "tIo>>".

When the function is tripped : Signalization = Led "Trip" is illuminated.

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Function reset when : The current drop below 95% Io>>.

Led reset when : push-button is pressed

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 14 of 34

3.7 - IoH (3F51N) - Third Earth Fault protection level

FuncEnab	\rightarrow	Enable		[Disable / Enable]			
Options	 → BI → Trg 	Disable Enable]	[Disable / Enable] [Disable / Enable]			
TripLev	→ IoH	2.00	Ion	(0.01 ÷ 9.99)	step	0.01	Ion
Timers	→ tIoH	0.10	S	(0.05 ÷ 60)	step	0.01	S

Description of variables

FuncEnab : If disable the function is disactivated

BI : Operation controlled by Blocking Digital Input

Trg : Function operation triggers the oscillographic wave form capture

(see § Oscillographic Recording)

IoH : Minimum Zero Sequence Residual Current Pick-up level

tIoH : Trip time delay

Trip when : The current trip level is exceeded for time "tIoH".

When the function is tripped : Signalization = Led "Trip" is illuminated

Last Trip = Is recorded

Function reset when : The current drop below 95% IoH.

Led reset when : push-button is pressed

3.8 - BF (F51BF) - Breaker Failure

FuncEnab	\rightarrow	Enable	[Disable / Enable]
Options	→ TrR	Relay1	Relay1 – Relay2 – Relay3 – Relay4
TripLev	\rightarrow	No Param	No Parameters
Timers	→ tBF	0.2 s	(0.05 ÷ 0.75) step 0.01 s

Description of variables

FuncEnab : If disable the function is disactivated

TrR : Output relay programmed for trip command to the Circuit Breaker

tBF : Trip time delay

<u>Operation</u>: If after the time "tBF" from pick-up of the programmed relay "TrR" the current measured still exceeds 5%In, the output relay associated to the "BF" function is operated (relay another than TrR).

3.9 - RTD - Remote Trip

Remote trip is controlled via the Digital Input D2.

FuncEnab	\rightarrow	Disable	[Disable / Enable]
Options	\rightarrow	No Param	No Parameters
TripLev	\rightarrow	No Param	No Parameters
Timers	\rightarrow	No Param	No Parameters

Description of variables

FuncEnab : If disable the function is disactivated

3.9 - I.R.F. - Internal Relay Failure

FuncEnab	\rightarrow	No Param	No Parameters
Options	→ Opl	NoTrip	[NoTrip / Trip]
TripLev	\rightarrow	No Param	No Parameters
Timers	\rightarrow	No Param	No Parameters

Description of variables

Opl : The variable "Opl" can be programmed to trip the output relays same as the other protection functions (Opl = TRIP), or to only operate the "IRF" signal led without tripping the output relays (Opl = NoTRIP).

Trip when : an internal fault in the relay is detected (see Diagnostics)

When the function is tripped : Signalization = Led "PWR/I.R.F." blink

Last Trip = Is recorded

Function reset when : it returns to normal operation

Led reset when : Push-button is pressed

3.10 - CBMng - Close Breaker Manage

FuncEnab	\rightarrow	No Param		No Parameters			
Options	\rightarrow	No Param		No Parameters			
TripLev	\rightarrow	No Param		No Parameters			
Timers	 → tcmd → tC 	0.10	s s	(0.10 ÷ 5.00) (0.10 ÷ 5.00)	step step	0.1 0.1	s s

Description of variables

tcmd : C/B closing output command duration

tC : Maximum admissible delay for detection of status signal after C/B operation.

3.11 - Osc - Oscillographic Recording

FuncEnab	ab → Enal		Enable		[Disable / Enable]			
Options	\rightarrow	Trg	Trip		[Disable / Start / ⁻	Γrip / Ext.I	np.]	
TripLev	\rightarrow		No Param		No Parameters			
Timers	→	tPre tPost	0.3 0.3	s	(0.1 ÷ 0.5) (0.1 ÷ 1.5)	step step	0.1 0.1	s s

Description of variables

FuncEnab

If disable the function is disactivated

Trg

Disab = Function Disable (no recording)

Start. = Trigger on time start of protection functions

Trip = Trigger on trip (time delay end) of protection functions

Ext.Inp. = Trigger from the Digital Input D3

tPre : Recording time before Trigger

tPost : Recording time after Trigger

When the option "Start" or "Trip" is selected:

The oscillographic recording is started respectively by the "Time Start" or by the "Time End" of any of the functions that have been programmed to Trigger the Wave Form Capture (I>, I>>, IH, Io>, Io>>, IoH).

The "Osc" Function includes the wave Form Capture of the input quantities (IA, IB, IC, IN) and can totally store a record of 3 seconds.

The number of events recorded depends on the duration of each individual recording (tPre + tPost). In any case the number of event stored cannot exceed ten (10 x 0.3 sec).

Any new event beyond the 3 sec capacity of the memory, cancel and overwrites the former records (FIFO Memory).

3.12 - Comm - Communication Parameters

FuncEnab	\rightarrow	No Param	No Parameters
Options	→ <u>LBd</u> → <u>RBd</u>	9600 9600	[9600 / 19200 / 38400 / 57600] [9600 / 19200]
		8,n,1 Modbus	[8,n,1 / 8,o,1 / 8,e,1] [Iec103 / Modbus]
TripLev	→ · · · · · · · · · · · · · · · · · · ·	No Param	No Parameters
Timers	\rightarrow	No Param	No Parameters

Description of variables

LBd	:	Local Baud Rate (Front panel RS232 communication speed)
RBd	:	Remote Baud Rate
		(Rear panel terminal blocks RS485 communication speed)
Mod	:	Remote mode (communication parameters)
		Note : Any change of this setting becomes valid at the next power on
RPr	:	Remote Protocol

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 17 of 34

3.13 - LCD - Display and Buzzer operation

FuncEnab	\rightarrow	No Param	No Parameters
Options	 → Key → BkL 	BeepON Auto	[BeepOFF / BeepON] [Auto / On]
TripLev	\rightarrow	No Param	No Parameters
Timers	\rightarrow	No Param	No Parameters

Description of variables

Key : Buzzer "Beep" on operation of Keyboard buttons.

BKL : LCD Backlight continuously "ON" or switched-on Automatically on operation of Keyboard buttons.

4. Logic Blocking of Functions

4.1 - Blocking Outputs

The instantaneous element of each of the protection functions (1F50, 2F50, 3F50, 1F50N, 2F50N, 3F50N) can be programmed to control one of the Output Relays.

This relay picks-up as soon as the input quantity exceeds the set trip level of the Protection Function and it automatically resets when the input quantity drops below the function reset level (\approx 95% of the trip level) or, in any case as soon as the time delay (tBF) of the Breaker Failure function is expired.

This instantaneous output can be used to activate the Blocking Input of another Protection Relay to implement a logic selectivity system. As above explained, in case of Breaker Failure, the blocking output is released, and the back-up protection enabled.

4.2 - Blocking Inputs

The time delayed tripping of any of the Protection functions (1F51, 2F51, 3F51, 1F51N, 2F51N, 3F51N) can be controlled by the activation of the Digital Input D1 (BI=Enable): in this case the set trip time delay of the function is increased by "2xtBF" so that other Protection Relays (set with the same trip time delay) that send the activation signal to the blocking Input D2, can trip before open and the C/B nearest to the Fault. Also in this case, however, another "2xtBF" seconds from the expiry of the set trip time delay, the blocking input is disregarded so allowing the protection relay to trip in case of Failure to open of the upstream Circuit

5. Output Relays

Breaker.

Four user programmable Output Relays are normally available R1, R2, R3, R4.

Each of them can be programmed to be controlled by any element (instantaneous or time delayed) of any of the Relay Functions including Breaker Failure and Internal Relay Fault.

Each output relay can also be programmed to operate "OPEN" and "CLOSE" control of the C/B either by the Relay Keyboard or via the serial communication bus

Moreover, the operation of each of the output relays can be programmed to be either Normally Deenergized (energized on tripping of the controlling Functional Element) or Normally Energized (Deenergized on tripping of the controlling Functional Element).

As an option (to be required when ordering the relay), the output relay "R4" can be replaced by a Field Bus output (CANBUS) that controls additional I/O modules for increasing as needed the number of user programmable Output Relays and Digital Inputs controlled from the relay.

Copyright 2009

6. Digital Inputs

Three optoisolated, self-powered Digital Inputs D1, D2, D3 are provided. A Digital Input is activated when its terminals are shorted by a cold contact.

D1 (Terminals 22 - 19) : It is usable as Function Blocking Input

D2 (Terminals 22 - 21) : It is used for Remote Trip

D3 (Terminals 22 - 20) : The digital Input indicates the position of the Circuit Breaker

(Input Closed = C/B closed; Input Open = C/B open).

If the option External Trigger = Enabled any time the DI passed from closed to open the oscillographic recording is started.

7. Self-diagnostic

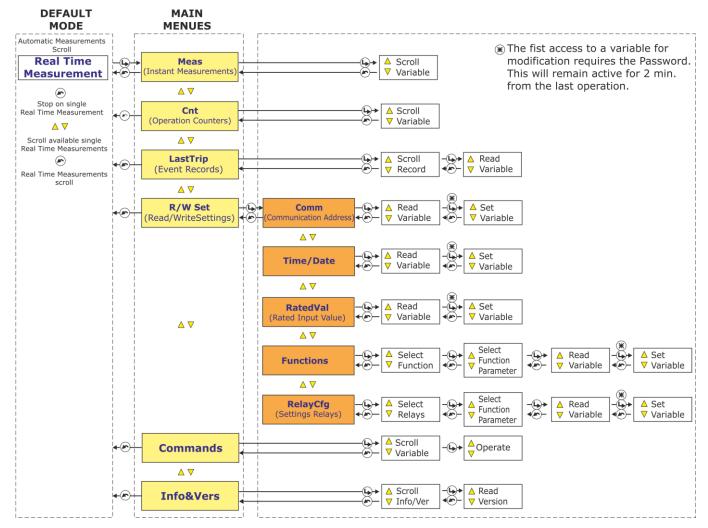
The relay incorporates a sophisticated self-diagnostic feature that continuously checks the following elements:

```
A/D conversion
Checksum of the settings stored into E<sup>2</sup>Prom.
DSP general operation (Power, Routines, etc.)
Lamp test (only on manual test).
```

Any time Power is switched on, a complete test is run; then, during normal operation, the test runs continuously, and the checksum is done any time a parameter is stored into E^2 Prom. If during the test any Relay Internal Failure (I.R.F) is detected:

If "I.R.F." is programmed to "Trip", the programmed output relays are operated same as on tripping of any protection function operation is stored in the "Event Records" and the I.R.F. signal led is set to flashing. If "I.R.F." is programmed to "NO Trip", and only the I.R.F. signal led is set to flashing.

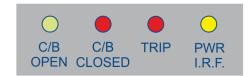
Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 19 of 34



8. Relay Management

The relay can be totally managed locally, either by the RS232 communication port or by the 4 key buttons and the LCD display, or remotely via the communication bus RS485 connected to the rear terminal blocks. The 2-line \times 8 characters LCD display shows the available information.

Key buttons operate according to the flow-chart here below.



Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 20 of 34

9. Signalizations

Four signal leds are available on the Front Face Panel:

a)	GREEN LED	C/B OPEN	Illuminated when C/B open status is detected. (Digital Input D3 Open)
b)	RED LED	C/B CLOSED	Illuminated when C/B close status is detected. (Digital Input D3 closed) Flashing when Breaker Failure is detected.
c)	RED LED	TRIP (*)	Flashing when a timed function starts to operate. Illuminated when any function is tripped; reset takes places by pressing the reset button.
d)	YELLOW LED	PWR/ I.R.F.	Illuminated during normal operation when Power Supply is ON. Flashing when a Relay Internal Fault is detected.

(*) When any protection function is tripped besides the Led which gives the general trip indication. The display shows the function that caused the tripping:

LastTrip steady "Cause" blinking

10. Keyboard Buttons

Enter Give access to any menu or convalidate any programming changement.

Reset Return from the actual selected menu to the former menu.

Select + Scrolls variables available in the different menus or increases/decreases setting values.

Select -

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 21 of 34

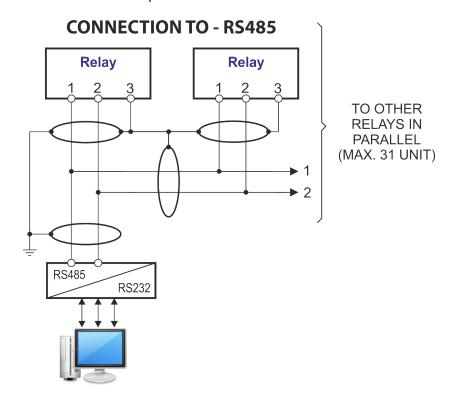
11. Serial Communication Port

11.1 - Main RS485 Serial Communication Port

This port is accessible via the terminals 1-2-3 provided on the relay terminal board.

It is used for connection to a serial bus interfacing up to 31 units with the Central Supervision System (SCADA, DCS, ecc).

The serial bus is a shielded pair of twisted cables connecting in parallel (Multi Drop) the different units (slaves) by the relevant terminals.


The physical link is RS485, and the Communication Protocol is MODBUS/RTU / IEC60870-5-103.

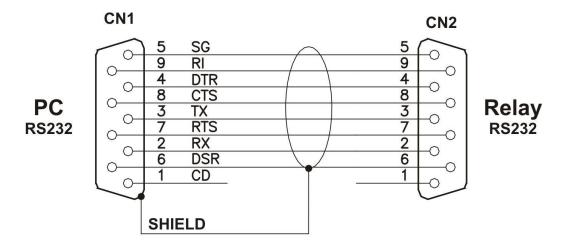
The configuration of transmission parameters is selectable.

Baud Rate	:	9600/19200 bps	9600/19200 bps	9600/19200 bps	
Start bit	:	1	1	1	
Data bit	:	8	8	8	
Parity	:	None	Odd	Even	
Stop bit		1	1	1	

Note: any change of this setting becomes valid at the next power on.

Each relay is identified by its programmable address code (NodeAd) and can be called from the P.C. A dedicated communication software (MSCom) for windows is available on www.microelettrica.com. Maximum length of the serial bus can be up to 200m.

For longer distance and for connection of up to 250 Relays, optical interconnection is recommended. (Please ask Microelettrica for accessories)


Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 22 of 34

11.2 - Communication Port on Front Face Panel

This port is used for communication through the Front Face Panel between a local Lap-top PC.

The physical link is RS232 by the standard female 9-pin D-sub connector available on the Front Face Panel. Via this Port complete Relay management and data acquisition is possible.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 23 of 34

12. Menu and Variables

12.2 - Real Time Measurements

Scrolling display of the Real Time Measurements is the Default operation.

Scrolling can be stopped at any of the measurements and restarted by pressing the Reset button (**). When stopped on one variable, (**) appears aside the measurement and the different available measurements

can be selected by the Database.

	Display		Description
I	= 0 - 65535	%In	Largest of the 3 phase-currents (% of rated current)
IA	= 0 - 65535	Α	RMS value of Phase A current
IB	= 0 - 65535	Α	RMS value of Phase B current
IC	= 0 - 65535	Α	RMS value of Phase C current
IN	= 0.0 - 6553.5	Α	RMS value of Neutral Current
Tem	= 0 - 65535	%T	Actual temperature rise

12.2 - Meas (Instantaneous Measurements)

Real time measurements can be frozen at any moment selecting the menu "Instant Measure":

"Real Time Meas"
"Measure"
"1st Measurement
to go back to "Measure"

other measurements

	Display		Description
I	= 0 - 65535	%In	Largest of the 3 phase-currents (% of rated current)
IA	= 0 - 65535	Α	RMS value of Phase A current
IB	= 0 - 65535	Α	RMS value of Phase B current
IC	= 0 - 65535	Α	RMS value of Phase C current
IN	= 0.0 - 6553.5	Α	RMS value of Neutral Current
Tem	= 0 - 65535	%T	Actual temperature rise

12.3 - Counter (Operation Counters)

The operation of any of the function herebelow reported, is counted and recorded in the menu "Counters".

"Real Time Meas"
"Counter"
"1st counters

to go back to "Counter"

√△ other counters

	Disp	lay	Description
T>	=	0 - 65535	Number of Thermal Image
I>	=	0 - 65535	Number of 1st Overcurrent (time delayed) trip
I>>	=	0 - 65535	Number of 2 nd Overcurrent (time delayed) trip
IH	=	0 - 65535	Number of 3 rd Overcurrent (time delayed) trip
Io>	=	0 - 65535	Number of 1 st time delayed Neutral Fault trip
Io>>	=	0 - 65535	Number of 2 nd time delayed Neutral Fault trip
IoH	=	0 - 65535	Number of 3 rd time delayed Neutral Fault trip
BF	=	0 - 65535	Number of operations of Breaker Failure
RTD	=	0 - 65535	Number of External Trip commands
I.R.F.	=	0 - 65535	Number of Internal Relay Faults
HR	=	0 - 65535	Number of HW recovery operations

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 24 of 34

12.4 - LastTrip (Event Recording)

The MC records any tripping and stores the information relevant to the last 20 tripping of protection functions

Each event recording includes the following information.

"Real Time Meas" "LastTrip" 1st event,

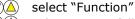
to scroll available events, to "Rec #" selected,

value to select the different fields;

	Display	Description
Func	xxxxx	Indication of the protection function which caused the relay tripping. For indication of the TRIP Cause the following acronyms are used: T> = Thermal Image I> = 1 st Overcurrent (Short Circuit) I>> = 2 nd Overcurrent (Short Circuit) IH = 3 rd Overcurrent (Short Circuit) Io> = 1 st Neutral Io>> = 2 nd Neutral IoH = 3 rd Neutral RTD = External Trip commands IRF = Internal Relay Fault
Date	: YYYY/MM/GG	Date: Year/Month/Day
Time	: hh:mm:ss:cc	Time: hours/minutes/second/hundredths of seconds
IA	= 0 - 65535	RMS value of phase A current (Primary Amps)
IB	= 0 - 65535	RMS value of phase B current (Primary Amps)
IC	= 0 - 65535	RMS value of phase C current (Primary Amps)
Io	= 0.0 - 6553.5 A	RMS value of Zero Sequence Current (Primary Amps)
Tem	= 0 - 65535	6T Actual temperature rise

- to go back to "Rec #",
- to go back to "Real Time Meas".

Copyright 2009


Date 06.09.2022 Rev. 1 Pag. 25 of 34

12.5 - R/W Set (Programming / Reading the Relay Settings)

"Main Menu"

select among following sub menus:

12.5.1 - CommAdd (Communication Address)

"CommAdd"

"Add: #"

"Password ????"

to select the Address (1-250) to validate.

(If not yet entered; see § Password)

Set Done!

The default address is 1.

Di	splay	Description	Setting	Range	Step	Unit
Add:	1	Identification number for connection on serial communication bus	1 -	250	1	-

12.5.2 - Time/Date (Time/Date)

"Time/Date"

"XX/MM"

"XX/XX/DD" "XX/XX/XX"

"hh/mm"

"XX/mm"

To validate

Exit

Date: Current Date, Time: Current time

to set year,

to set month, to set day,

to set hour,

to set minutes, Set Done!

12.5.3 - RatedVal (Rated Input Values)

"RatedVal"

1st Variable

to scroll variables

to modify selected variable

"Password ????" (If not yet entered) or #???

to set variable value,

to validate.

Set Done!

	Display		Description	Settii	ng F	Range	Step	Unit
I1	100	Α	Rated Primary current of phase C.T.	1	-	9999	1	Α
I2	5	Α	Rated Secondary current of phase C.T.	1	-	5	1/5	Α
IN1	1	Α	Rated Primary neutral	1	-	9999	1	Α
IN2	1	Α	Rated Secondary neutral	1	-	9999	1	Α
In	100	Α	Reference primary current of the relay	1	-	9999	1	Α
Freq	50	Hz	System rated frequency	50	-	60	10	Hz
TW	60	sec	Warming-up time constant for Thermal Image	60	-	3600	1	sec
Ib	105	%In	Maximum admissible continuous overload for Thermal Image	50	-	130	0.1	%In

(If not yet entered; see § Password)

Copyright 2009 06.09.2022 Date Rev. 1 Pag. 26 of 34

12.5.4 - Function (Functions)

"Function",

1st function,

to scroll available Functions,

to Read/Write setting of the selected function, to select the different definable fields

to access the selected field and read the actual setting of the relevant variable

to modify the actual setting;

to set the new value.

to validate.

- FuncEnab

- TripLev

- Options

MC40

- Timers

Set Done!

		Display					
Function	Туре	Variable	Default Setting	Unit	Description	Setting Range	Step
Password		= 0000-9999	1111	-	Password for programming enable (see § Password)		
T>	FuncEnab	\rightarrow	Disab	le	Enable of the protection function	Enable/Disable	-
(F49)	Options	\rightarrow	NoPara		No Parameters	-	-
	TripLev	\rightarrow Tal	50	%Tb	Thermal prealarm	50 - 110	1
		Tst	100	%Tb	Reset level.	10 - 100	1
	Timers	\rightarrow	NoPara		No Parameters		-
I>	FuncEnab	→ TCC	Enab	le	Enable of the protection function	Enable/Disable	-
(1F51)	Options	→ TCC	D		Time Current Curves	D,A,B,C, I, VI,	-
		BI	Disab	ما	Operation controlled by Blocking Digital Input	EI, MI, SI Enable/Disable	_
		Trg	Enab		Function operation triggers the oscillographic wave	•	
		119	Liidb		form capture	Enable/Disable	-
	TripLev	→ I>	0.5	In	Trip level of overcurrent protection	0.20 - 4.00	0.01
	Timers	→ tI>	2.00	s	Trip time delay	0.05 - 60.00	0.01
I>>	FuncEnab	\rightarrow	Enab	le	Enable of the protection function	Enable/Disable	-
(2F51)	Options	\rightarrow BI	Disab	le	Operation controlled by Blocking Digital Input	Enable/Disable	-
		2xI	Disab		Automatic threshold doubling on inrush	Enable/Disable	-
		Trg	Enab	le	Function operation triggers the oscillographic wave	Enable/Disable	_
		_		_	form capture	•	
	TripLev	→ <i>I</i> >>	2.00	In	Trip level of overcurrent protection	0.50 - 40.00	0.01
	Timers	$\rightarrow tI>> t2x I$	1.00 0.01	S S	Trip time delay Trip time delay Automatic threshold doubling	0.05 - 60.00 0.02 - 9.99	0.01 0.01
IH	FuncEnab	→ ·	Enab		Enable of the protection function	Enable/Disable	-
(3F51)	Options	→ BI	Disab		Operation controlled by Blocking Digital Input	Enable/Disable	_
(3.31)	Options	2xI	Enab		Automatic threshold doubling on inrush	Enable/Disable	_
		Trg	Enab		Function operation triggers the oscillographic wave	•	
		779	Liidb		form capture	Enable/Disable	-
	TripLev	\rightarrow IH	5.00	In	Trip level of overcurrent protection	0.50 - 40.00	0.01
	Timers	→ tIH	0.05	S	Trip time delay	0.05 - 60.00	0.01
		t2xI	0.10	S	Trip time delay Automatic threshold doubling	0.02 - 9.99	0.01
Io>	FuncEnab	\rightarrow	Enab	le	Enable of the protection function	Enable/Disable	-
(1F51N)	Options	\rightarrow TCC	D		Time Current Curves	D,A,B,C, I, VI,	-
		0.7	Diss.	1.	Occupation and builted by Blacking Biothel Touris	EI, MI, SI	
		BI Tra	Disab Enab		Operation controlled by Blocking Digital Input Function operation triggers the oscillographic wave	Enable/Disable	-
		Trg	Enab	ie	form capture	Enable/Disable	-
	TripLev	→ Io>	0.10	Ion	Trip level of Earth Fault protection	0.01 - 4.00	0.01
	Timers	→ tIo>	2.00	S	Trip time delay	0.05 - 60.00	0.01
Io>>	FuncEnab	→	Enab		Enable of the protection function	Enable/Disable	-
(2F51N)	Options	→ BI	Disab		Operation controlled by Blocking Digital Input	Enable/Disable	-
		Trg	Enab	le	Function operation triggers the oscillographic wave form capture	Enable/Disable	-
	TripLev	<i>→ Io>></i>	0.50	Ion	Trip level of Earth Fault protection	0.01 - 9.99	0.01
	Timers	→ tIo>>	1.00	S	Trip time delay	0.05 - 60.00	0.01

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 27 of 34

		Di	splay					
Function	Туре		Vari	able Default Value	Unit	Description	Setting Range	Step
IoH	FuncEnab	\rightarrow		Enab		Enable of the protection function	Enable/Disable	-
(3F51N)	Options	\rightarrow	BI	Disal		Operation controlled by Blocking Digital Input	Enable/Disable	-
			Trg	Enable		Function operation triggers the oscillographic wave form capture	Enable/Disable	-
	TripLev	\rightarrow	IoH	2.00	Ion	Trip level of Earth Fault protection	0.01 - 9.99	0.01
	Timers	\rightarrow	tIoH	0.10	S	Trip time delay	0.05 - 60.00	0.01
BF	FuncEnab	\rightarrow		Enat		Enable of the protection function	Enable/Disable	-
(F51BF)	Options	\rightarrow	TrR	Rela	y1	Output relay operated on BF tripping	Relay1- Relay2 Relay3- Relay4	-
	TripLev Timers	\rightarrow \rightarrow	tBF	No Parameters 0.20	s	Time delay for Breaker Failure alarm	0.05 - 0.75	0.01
RTD	FuncEnab	\rightarrow	LDF	Disal		Enable of the protection function	Enable/Disable	0.01
KID	Options	\rightarrow		No Parameters	JIC .	Enable of the protection function	Litable, Disable	
	TripLev	\rightarrow		No Parameters				
	Timers	\rightarrow		No Parameters				
IRF	FuncEnab	\rightarrow		No Parameters				
	Options	\rightarrow	Opl	NoTi	-ip	Operation of output Relays on detection of Internal Relay Fault	NoTrip – Trip	-
	Total			No Parameters				
	TripLev Timers	\rightarrow \rightarrow		No Parameters No Parameters				
CBMng	FuncEnab	\rightarrow						
_	Options	\rightarrow						
	TripLev	\rightarrow		No Parameters				
	Timers	\rightarrow	tcmd	0.1		C/B closing output command duration	0.10 - 5.00	0.1
		\rightarrow	tC	0.1	0	Maximum admissible delay for detection of status signal after C/B operation.	0.10 - 5.00	0.1
Osc	FuncEnab	\rightarrow		Enat	ole	Enable of the protection function	Enable/Disable	-
	Options	\rightarrow	Trg	Trij	כ	Trigger operation mode	Disable	-
							Start	
							Trip Ext.Inp	
	TripLev	\rightarrow		No Parameters			Extrillb	
	Timers	\rightarrow	tPre	0.3	0	Recording time before Trigger	0.10 - 0.50	0.1
		\rightarrow	tPost	0.3		Recording time after Trigger	0.10 - 1.50	0.1
Comm	FuncEnab	\rightarrow		No Parameters				
	Options	\rightarrow	LBd	960	0	Local Baud Rate	9600 - 19200	_
					_	(Front panel RS232 communication speed)	38400 - 57600	
			RBd	960	0	Remote Baud Rate (Rear panel terminal blocks RS485 communication speed)	9600 - 19200	-
			Mod	8,n,	1	Remote mode (communication parameters)	8,n,1	
			riou	0,11,	_	Note : any change of this setting became valid at	8,0,1	-
						the next power on	8,e,1	
			RPr	Modb	us	Remote Protocol	Iec103-Modbus	-
	TripLev	\rightarrow		No Parameters				
	Timers	\rightarrow		No Parameters				
LCD	FuncEnab	\rightarrow	Vou	No Parameters	ON	Puzzon "Poon" on onorption of Voule and hutters	PageON	
	Options	\rightarrow	Key	Веер	ON	Buzzer "Beep" on operation of Keyboard buttons.	BeepON- BeepOFF	-
			BkL	Aut	0	LCD Backlight continuously "ON" or switched-on	Auto - ON	
			DILL	Aut		Automatically on operation of Keyboard buttons.	Auto Oil	-
	TripLev	\rightarrow		No Parameters		, ,		
	Timers	\rightarrow		No Parameters				
			_					

Settings can also be programmed via the serial communication ports.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 28 of 34

12.6 - RelayCfg (Relay Configuration)

To associate one of the Output Relays to one or more functions: enter the menu "R/W Set", select "Relay Cfg", select the "Relay #" to be programmed, select "Link"; at this stage the list of the available functions is displayed. Scrolling the list by the "+" and "-" keys the function is selected and then assigned by the key "Enter". The assignation is confirmed by the function indication that switches from blinking to steady. Any of the Output Relays can be programmed to work in two different modes:

N.D.	Normally Deenergized	Relay is energized on trip of the associated functions
N.E.	Normally Energized	Relay is deenergized on trip of the associated functions

Programming of working mode is made as above selecting "OpMode" instead of "Link".

	Dis	splay				
Relay	Туре		Default Value	Description	Setting Range	Step
Relay1 (R1)	Link	\rightarrow	T>, tI>, I>>,tIH, tIo>, tIo>>,tIoH	Association of functions to output relay R1	T> - Ta -I> - tI> - I>> - tI>> - IH - tIH - Io> - tIo> - Io>> - tIo>> - tIoH -BF - RTD - IRF - CBopen - CBclose - HwRecov	-
	OpMode	\rightarrow	N.D.	N.D. (Normally Deenergized) N.E. (Normally Energized)	N.D./N.E.	-
Relay2 (R2)	Link	\rightarrow	BF	Association of functions to output relay R2	T> - Ta -I> - tI> - I>> - tI>> - IH - tIH - Io> - tIo> - Io>> - tIo>> - tIoH -BF - RTD - IRF - CBopen - CBclose - HwRecov	-
	OpMode	\rightarrow	N.D.	N.D. (Normally Deenergized) N.E. (Normally Energized)	N.D./N.E.	-
Relay3 (R3)	Link	\rightarrow	Ta, I>, I>>, IH, Io>, Io>>, IoH	Association of functions to output relay R3	T> - Ta -I> - tI> - I>> - tI>> - IH - tIH - Io> - tIo> - Io>> - tIo>> - tIoH -BF - RTD - IRF - CBopen - CBclose - HwRecov	-
	OpMode	\rightarrow	N.D.	N.D. (Normally Deenergized) N.E. (Normally Energized)	N.D./N.E.	-
Relay4 (R4)	Link	\rightarrow	IRF	Association of functions to output relay R4	T> - Ta -I> - tI> - I>> - tI>> - IH - tIH - Io> - tIo> - Io>> - tIo>> - tIoH -BF - RTD - IRF - CBopen - CBclose - HwRecov	-
	OpMode	\rightarrow	N.E.	N.D. (Normally Deenergized) N.E. (Normally Energized)	N.D./N.E.	-

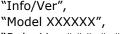
12.7 - Commands

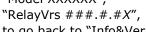
"Commands"

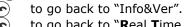
1st Control, to select other available control,

to operate selected control.

Display	Description	
Clear	: Erase memory of Trip Counters, Event Records.	
Test	: Starts a relay diagnostic test	
Reset	: Reset after trip	
CBopen	: Manual Open - Close Breaker	
CBclose	: Manual Close - Close Breaker	
ResThIm	: Reset Thermal Image	

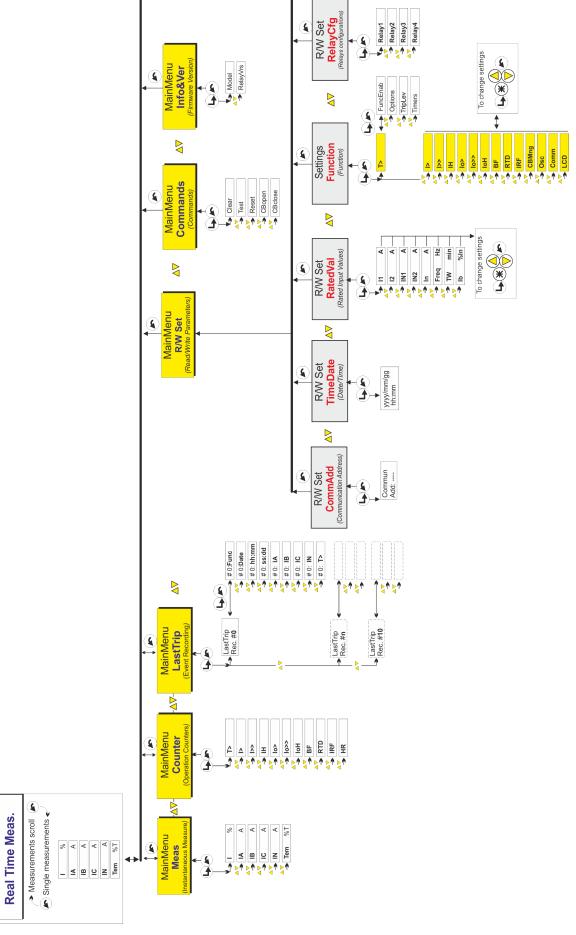

12.8 - Info&Ver (Firmware - Info&Version)


The menu displays the Relay Model and the Firmware Version



"Real Time Meas"

to go back to "Real Time Meas"



Model Relay Firmware Version

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 29 of

12. Keyboard Operational Diagram

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 30 of 34

14. Password

This password is requested anytime the user wants to write in the "Settings" menu a command of the "Commands" menu.

The default password is "1111"

When password is required, proceed as follows

The Display shows the message "Password????"

to select 1st digit (1-9) to select 2nd digit (1-9)

to validate

to select 3rd digit (1-9)

to select 4th digit (1-9)

to complete procedure.

The "password" is required any time you attempt to modify one of the programmable variables at the first entrance in the "Settings" and/or "Commands" menus.

The "password "remains valid for 2 minutes from the last operation of the programming buttons or until the button is pressed to return to the default display (RT Meas).

Once the Password has been entered, a "#" appears before the variable that can be modified.

14.1 - MS-Com Password

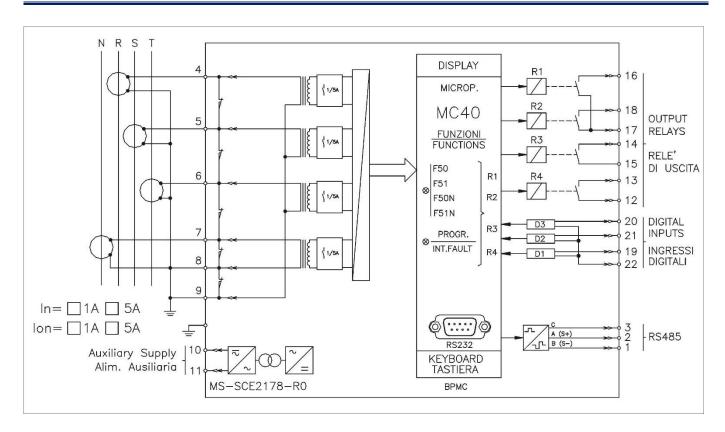
This password is requested anytime the user wants to send to the relay a setting parameters modification or to issue a command through the relay itself using the managing software MSCom.

The user can decide whether inserting his own password (see MS-Com Operational Manual) or keeping the password disabled just clicking on the OK button when the password is requested.

15. Maintenance

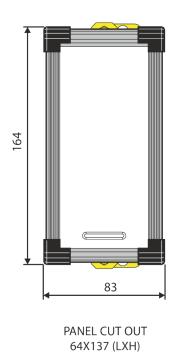
No maintenance is required. In case of malfunctioning please contact Microelettrica Scientifica Service or the local Authorised Dealer mentioning the relay's Serial No reported in the label on relays enclosure.

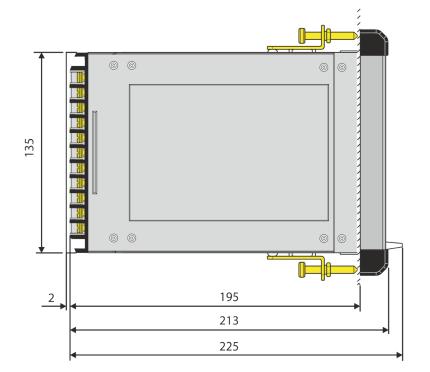
16. Power Frequency Insulation Test


Every relay individually undergoes a factory insulation test according to IEC255-5 standard at 2 kV, 50 Hz 1min. Insulation test should not be repeated as it unusefully stresses the dielectrics.

When doing the insulation test, the terminals relevant to serial output, digital inputs and RTD input must always be short circuited to ground. When relays are mounted in switchboards or relay boards that have to undergo the insulation tests, the relay should be isolated. This is extremely important as discharges eventually tacking place in other parts or components of the board can severely damage the relays or cause damages not immediately evident to the electronic components.

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 31 of 34

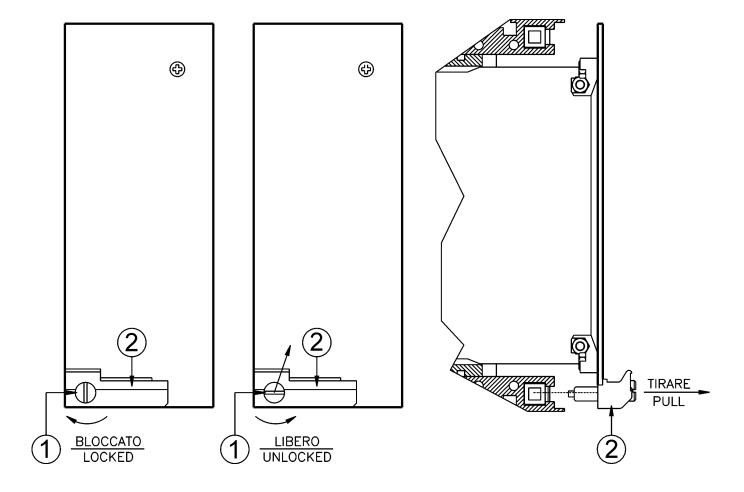



17. Connection Diagram

18. Overall Dimensions

PROTECTION DEGREE IP44 (IP54 on request)

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 32 of 34


19. Direction for Pcb's Draw-Out and Plug-In

19.1 - Draw-Out

Rotate clockwise the screws 1 in the horizontal position of the screws-driver mark. Draw-out the PCB by pulling on the handle 2

19.2 - Plug-In

Rotate clockwise the screws \odot in the horizontal position of the screws-driver mark. Slide-in the card on the rails provided inside the enclosure. Plug-in the card completely and by pressing the handle to the closed position. Rotate anticlockwise the screws \odot with the mark in the vertical position (locked).

Copyright 2009 Date 06.09.2022 Rev. 1 Pag. 33 of 34

20. Electrical Characteristics

Approval: CE Reference Standards	IEC 60255 - CE Directive - EN/IEC61000 - IEEE C37
Dielectric test voltage	IEC 60255-5 2kV, 50/60Hz, 1 min.
Impulse test voltage	IEC 60255-5 5kV (c.m.), 2kV (d.m.) – 1,2/50μs
Insulation resistance	> 100MΩ

Environmental Std. Ref. (IEC 60068)								
Operation ambient temperatu	ıre	-10°C / +55°C						
Storage temperature		-25°C / +70°C						
Environmental testing	(Cold)	IEC60068-2-1						
	(Dry heat)	IEC60068-2-2						
	(Change of temperature)	IEC60068-2-14						
	(Damp heat, steady state)	IEC60068-2-78	RH 93% Without Condensing AT 40°C					

CE EMC Compatibility (EN61000-6-2 - EN61000-6-4 - EN50263)				
Electromagnetic emission	EN55011/22	industrial (environment	
Radiated electromagnetic field immunity test	IEC61000-4-3 ENV50204	level 3	80-2000MHz 900MHz/200Hz	10V/m 10V/m
Conducted disturbances immunity test	IEC61000-4-6	level 3	0.15-80MHz	10V
Electrostatic discharge test	IEC61000-4-2	level 3	6kV contact / 8kV	air
Power frequency magnetic test	IEC61000-4-8		1000A/m	50/60Hz
Pulse magnetic field	IEC61000-4-9		1000A/m, 8/20μs	
Damped oscillatory magnetic field	IEC61000-4-10		100A/m, 0.1-1MH	Z
Immunity to conducted common mode disturbance 0Hz-150KHz	IEC61000-4-16	level 4		
Electrical fast transient/burst	IEC61000-4-4	level 3	2kV, 5kHz	
HF disturbance test with damped oscillatory wave (1MHz burst test)	IEC60255-22-1	class 3	400pps, 2,5kV (m	.c.), 1kV (d.m.)
Oscillatory waves (Ring waves)	IEC61000-4-12	level 4	4kV(c.m.), 2kV(d.	m.)
Surge immunity test	IEC61000-4-5	level 4	2kV(c.m.), 1kV(d.	m.)
Voltage interruptions	IEC60255-4-11			
Resistance to vibration and shocks	IEC60255-21-1	- IEC60255-21-2 - 10-500Hz - 1g		

Electric Rated Value		
Accuracy at reference value of influencing factors	2% In	for measure
	2% + to (to=20÷30ms @ 2xIs)	for times
Rated Current	In = 1A/5A - On = 1A/5A	
Current overload	400 A for 1 sec; 20A continuous	
Burden on current inputs	0.1VA a In = $1A$	
Average power supply consumption	≤ 7 VA	
Output relays	rating 6 A; Vn = 250 V	
	A.C. resistive switching = 1500VA (40	0V max)
	make = 30 A (peak) 0,5 sec.	
	break = 0.3 A, 110 Vcc,	
	L/R = 40 ms (100.000 op.)	

Output relays	rating 6 A; Vn = 250 V A.C. resistive switching = 1500VA (400V max) make = 30 A (peak) 0,5 sec. break = 0.3 A, 110 Vcc, L/R = 40 ms (100.000 op.)
Communication Parameters	
RS485 (Back)	9600/19200 bps - 8,n,1 - 8,e,1 - 8,o,1 - Modbus RTU or IEC60870-5-103
RS232 (Front)	9600/19200/38400/57600 - 8,n,1 - Modbus RTU

This publication may be subject to alteration without prior notice. Therefore, a printed copy of this document may not be the latest revision. Please contact your local representative for the latest update. The trademarks MS Microelettrica Scientifica, Knorr and Knorr-Bremse as well as the figurative mark "K" are registered. Copyright © Knorr-Bremse AG and Microelettrica Scientifica SpA - all rights reserved, including industrial property rights application. Knorr-Bremse AG and Microelettrica Scientifica SpA retain any power of disposal, such as for copying and transferring.

20090 Buccinasco (MI) · Via Lucania 2 · Italy · Tel.: +39 02 575731 $\hbox{E-Mail: info@microelettrica.com} \cdot \hbox{www.microelettrica.com}$

06.09.2022 Rev. 1 Copyright 2009 Date Pag. 34 of 34