

D.C. MEASURING CONVERTER

TYPE

"MHIT"

OPERATION MANUAL

((

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 1 di 16

1. General Utilization and Commissioning Directions	3
1.1 - Storage and Transportation	3
1.2 - Installation	3
1.3 - Electrical Connection	3
1.4 - Measuring Inputs and Power Supply	3
1.5 - Outputs Loading	3
1.6 - Protection Earthing	3
1.8 - Safety Protection	3
1.9 - Handling	3
1.10 - Maintenance	3
1.11 - Waste Disposal of Electrical & Electronic Equipment	
1.12 - Fault Detection and Repair	4
2. General Characteristics	4
2.1 - Auxiliary Supply	4
2.2 - Interconnection Transmitter/Receiver	
3. Characteristics of transfer transmitter / receiver	5
4. Transmition unit characteristics (MHIT-T) with external power supply	5
4.1 - Common Characteristics	5
4.2 - MHIT-TV	5
4.3 - MHII-II	5
4.4 - Protection Function of Shunt Measurement Input	
4.5 - MHIT-TVI	5
5. Receiver unit characteristic (MHIT-R)	6
5.1 - Leds and output relays	6
5.1 - Setting og output channels CH1, CH2, CH3, CH4	
5.3 - Example of output setting	9
5.3.2 - Voltage Reciver - MHIT-RV	
6. Functional Test	11
6.1 - Current Unit	11
6.1.1 - Check of zero input	11
6.1.2 - Check full scale value	11
6.2 – Voltage Unit	11
6.2.1 - Check of zero input	11
6.2.2 - Check full scale value	11
7. Wiring Diagram	12
8. Receiver – Wiring Diagram	13
9. Overal Dimensions (mm) - Transmitter - MHIT-TV - MHIT-TI	14
10. Overal Dimensions (mm) - Transmitter - MHIT-TVI	
11. Overal Dimensions (mm) - Receiver	
12. Electrical Characteristics	16
TEL ELCOLICAL CHARACTERISTICS	10

1. General Utilization and Commissioning Directions

1.1 - Storage and Transportation

Must comply with the environmental conditions stated in the product's specification or by the applicable IEC standards.

1.2 - Installation

Must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 - Electrical Connection

Must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 - Measuring Inputs and Power Supply

Carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 - Outputs Loading

Must be compatible with their declared performance.

1.6 - Protection Earthing

When earthing is required, carefully check its effectiveness.

1.8 - Safety Protection

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 - Handling

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules.

The damage caused by electrostatic discharge may not be immediately apparent, but the design reliability and the long life of the product will have been reduced. The electronic circuits produced by M.S. are completely safe from electrostatic discharge (8 kV IEC 255.22.2) when housed in their case; dismounting the modules without proper cautions expose them to the risk of damage.

1.10 - Maintenance

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 3 di 16

1.11 - Waste Disposal of Electrical & Electronic Equipment

(Applicable throughout the European Union and other European countries with separate collection program). This product should not be treated as household waste when you wish dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequence to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resource.

1.12 - Fault Detection and Repair

Internal calibrations and components should not be altered or replaced. For repair, please ask the Manufacturer or its authorized Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

2. General Characteristics

The MHIT converters provide a measurement of current or voltage fully isolated and safety

Make electric connection in conformity with the diagram reported on relay's enclosure. Check that input quanties are same as reported on the diagram and on the test certificate. The auxiliary power is supplied by a built-in module fully isolated and self protected.

2.1 - Auxiliary Supply

The converter can be supply with different voltages (see general characteristics)

2.2 - Interconnection Transmitter/Receiver

The two units are connected by a fiber optic belt 5m (others lengh on request) long with plug-in ST connectors.

Minimum bending radius: during the installation it is necessary to assess that the minimal beam of curving is **not less then 6 cm**; a little radius can damage the fiber optic or increase the dB loss thus causing an incorrect transfer of digital information between Transmitter and Receiver.

The fiber optic connector present on the Transmitter, the Receiver and the fiber optic belt, are protected by proper caps that must be used any time the fiber optic is disconnected.

Leaving the connectors without the protection cap can deteriorate the quality of transmission.

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 4 di 16

3. Characteristics of transfer transmitter / receiver

Measurement resolution	0.1% Vn / 0.05% F.S. for voltage converter (2Vn)
	0.05% In / 0.05% F.S. for current converter (channels 01xIn)
	0.5% In / 0.05% F.S. for current converter (channels 010xIn)
Class	0.2
Reponse time	200 μsec.
Connection Output	Fiber Optic type 200.230.500μ HCS (plastic) or 62.5/125μ (glass)
	Connection type ST. Fiber Optic standard length 5m (max. 1Km with glass)

4. Transmition unit characteristics (MHIT-T...) with external power supply

Three transmitter version are available: for current measure, voltage or current/voltage.

4.1 - Common Characteristics

Power supply voltage	48 (-20%) ÷ 132 (+15%) Vcc (class DC3) 48 (-15%) ÷ 110 (+10%) Vca (class AC2)
Output	Fiber Optic type 200.230.500µ HCS (plastic) or 62.5/125µ (glass) Connection type ST. Fiber Optic standard length 5m (max. 1Km with glass)
Sampling frequency	5kHz
Enclosure	Material: BMCRF9 protection degree IP44
Connections terminals	Bolt type terminals (M6) for inputs; ST for the F.O.; Screw type 4 mm ² for Power Supply.
Power Supply Consumption	≤ 5 VA

4.2 - MHIT-TV

Directly connected to the H.V. line via self contained voltage divider.

Rated input voltage Vn	(1) 1000 Vcc (2) 2000 Vcc (3) 4000 Vcc
Imput impedence	22 ΜΩ
Measurement range	(0 ÷ ±2)Vn

4.3 - MHIT-TI

Directly connected to the H.V. line across a normal measuring shunt.

Rated input In/	(1) 60 mVcc (2) 80 mVcc (3) 100 mVcc	(4) 120 mVcc	
Measurement range	(0 ÷ ±10)In (0 ÷ ±20)In		

4.4 - Protection Function of Shunt Measurement Input

The measurement input from the shunt is protected agains overvoltages that can be generated by the broken of the shunt.

The broken of the shunt will generate the full line voltage to the input terminal. The device is able to protect itself, without external components. The protection operates until two time the nominal voltage at the terminals, it means 6kVcc continuous.

To reset the protection , and enable the normal operation of measurement it's enough switch off and on the device.

4.5 - MHIT-TVI

Directly connected to the H.V. line and to voltage divider

We have the same characteristic for "I" and "V" transmitter write above.

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 5 di 16

5. Receiver unit characteristic (MHIT-R...)

Two receiver models are avaiable, one to be connected to the voltage transmitter and the other to be connected to che current transmitter. On the receiver can be use as optional a front pannel for the reading of measurement.

Are avaiable two couple of channels galvanical isolated that can be used for test and control funcion of generated signal. The device provide a diagnostic relay that trips for interrupt of fiber optic signal or in case of malfuncioning on transmitter or alarm for not valid measurement.

Power Supply Consumption	≤ 7 VA
Power supply voltage	48 (-20%) ÷ 132 (+15%) Vcc (class DC3)
	48 (-15%) ÷ 110 (+10%) Vca (class AC2)
Imput	Fiber Optic from transmitter MHIT-T
Output	4 current loops (configurable)
	Range: $(0 \div 20)$ mA
	(0 ÷ 40)mA
	(4 ÷ 20)mA
Maximun burder	500 ohm
Enclosure	ABS protection degree IP42
Insulation	2kV rms for 1 min. between power supply / output
	500V between outputs groups
Connections terminals	Bolt type terminals (2.5 mmq) - ST for Fiber Optic

5.1 - Leds and output relays

	Optical fiber works	s and Vaux avaiable	Interrupted optical fiber, shunt interrupted e Vaux avaiable	Vaux not avaiable
Green Led	Illuminated		Illuminated	Off
Red Led	Over threshold Under threshold	: Illuminated : Off	Flashing	Off
R1 (diagnostic)	Energized with clo	se contact	Not energized with open contact	Not energized with open contact
R2 (Alarm N.D.) (*)	Over threshold Under threshold	: Energized with close contact: Not energized with open contact	Not energized with open contact	Not energized with open contact
R2 (Alarm N.E.) (*)	Over threshold Under threshold	: Not energized with open contact: Energized with close contact	Energized with close contact	Not energized with open contact

^(*) the threshold trip level can be set by software "MSCom".

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 6 di 16

5.1 - Setting og output channels CH1, CH2, CH3, CH4

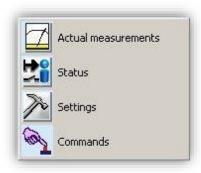
It's possible change the measurement output default setup CH1, CH2, CH3, CH4, by comunication software MSCom2.

Attention!!: Before change the setting ot output, disconnect the connection fiber optic between transmitter and receiver.

Connect the receiver MHIT-R trought communication port RS485 (on front pannel) with RS232/485 converter (Model CPSC optional) to the PC.

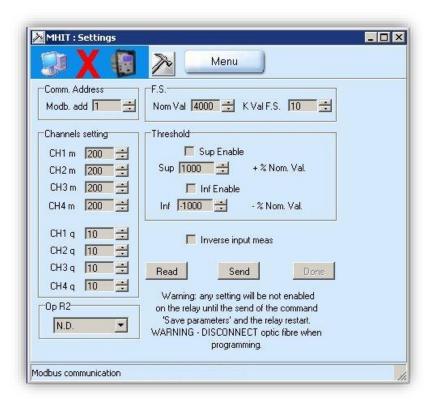
Run the communication software MSCom2.

The "Actual measurement" window will be open:




Press the menu button, and select "Change window":

Select "Settings":



Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 7 di 16

Follower window will appears:

Legenda	Definitions
Comm Address	Communication address
Modb. Add	Modbus adress
F.S.	Full Scale transmitter
Nom Val	Nominal value
K Val F.S.	Full scale value refered to nominal one
Channels settings	Channel setting
CH1m	Channel 1 gain
CH2m	Channel 2 gain
CH3m	Channel 3 gain
CH4m	Channel 4 gain
CH1q	Channel 1 offset
CH2q	Channel 2 offset
CH3q	Channel 3 offset
CH4q	Channel 4 offset
Op R2	Working mode of output relay R2
Threshold	
Sup Enable	positive threshold enable
Sup	% of nominal value
Inf Enable	negative threshold enable
Inf	% of nominal value
Inverse input meas	Inverse input measurement

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 8 di 16

5.3 - Example of output setting

The receiver outputs can be modify as wish.

Following are show the value to insert in the comunication software MScom to abtain the most usual output range.

5.3.1 - Current Receiver - MHIT-RI

Value to set to have an output $(0 \div 20)$ mA or $(4 \div 20)$ mA, on channel 1 (CH1) with a nomial current "In" or "10In":

5.3.1.1 - Protection Device (U-MLEs, U-MLC, DIA) 0 - 10In

	Channels Settings								Dynai	mic Range
(y_1)		(y_2)			(x_1)		(x_2)		CHm (gain)	CHq (offset)
0	÷	20	mΑ	=	0	÷	10	In	200	10
0	÷	20	mΑ	=	0	÷	1	In	2000	10
4	÷	20	mΑ	=	0	÷	10	In	160	14
4	÷	20	mΑ	=	0	÷	1	In	1600	14

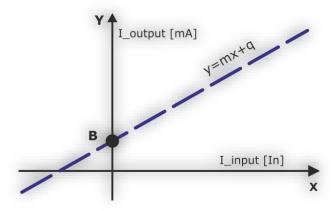
5.3.1.2 - Measure Device (device, plc) 0 - 2In

Channels Settings						IS	Dynamic Range			
(y_1)		(y_2)			(x_1)		(x_2)		CHm (gain)	CHq (offset)
0	÷	20	mΑ	=	0	÷	2	In	200	10
0	÷	20	mΑ	=	0	÷	1	In	400	10
4	÷	20	mΑ	=	0	÷	2	In	160	14
4	÷	20	mΑ	=	0	÷	1	In	320	14

This value can be apply in any combination even on channel "CH2, CH3, CH4". For other setting please contact Microelettrica Scientifica.

5.3.2 - Voltage Reciver - MHIT-RV

Value to set to ahve an output $(0 \div 20)$ mA or $(4 \div 20)$ mA, on channel 1 (CH1) with a nominal voltage "Vn" or "2Vn":

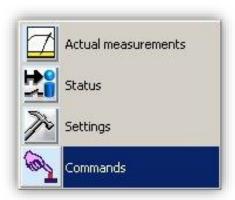

			Chan	nels S	Settings				Dynami	c Range
(y_1)		(y_2)			(x_1)		(x_2)		CHm (gain)	CHq (offset)
0	÷	20	mΑ	=	0	÷	2	Vn	200	10
0	÷	20	mΑ	=	0	÷	1	Vn	400	10
4	÷	20	mΑ	=	0	÷	2	Vn	160	14
4	÷	20	mΑ	=	0	÷	1	Vn	320	14

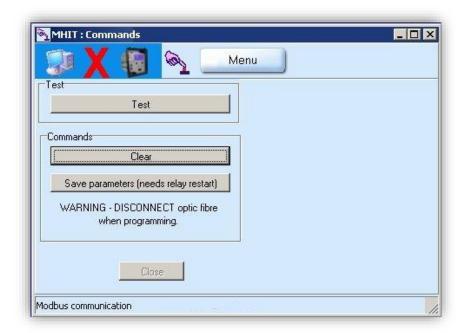
This value can be apply in any combination even on channel "CH2, CH3, CH4". For other setting please contact Microelettrica Scientifica.

Others output channel value can be obteined by appling follow formulas:

CHm (gain) =
$$100 \cdot \frac{y_2 - y_1}{x_2 - x_1}$$

CHq (offset) =
$$\frac{y_2 \cdot x_1 + y_1 \cdot x_2}{x_2 - x_1} + 10$$




ATTENTION!

At the end of configuration of output channeò, press "Send" button. By "Menu" button select "Command" :

Follow window will appair:

Press the button "Save Parameters".

Switch off and on the receiver to enable the new parameters.

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 10 di 16

6. Functional Test

The following procedures allow for a field check of the operation of system Transmitter + Fiber Optic + Receiver: the accuracy of the system is not under evaluation.

6.1 - Current Unit

6.1.1 - Check of zero input

Short circuit the input terminals of the Transmitter and read on the Receiver the value corrisponding to zero input: A residual measurement $\leq 0.1\%$ (0.02mA) of full scale value is acceptable.

Fxa	 	I

Output Rating	Offset
0 ÷ 20mA	±0.02mA
4 ÷ 20mA	±0.02mA

6.1.2 - Check full scale value

Connect a resistor "R" (see table) accross the input terminals of the Transmitter and read out of the Receiver the corrisponding value:

Note: This test is not made for checking the accuracy.

Input Rating		R (Ω)	Rated Output (Channel 0-20mA)	Acceptable measurement
Shunt = 60mVcc	\rightarrow	341	20mA	(18 ÷ 22)mA
Shunt = 80mVcc	\rightarrow	459	20mA	(18 ÷ 22)mA
Shunt = 100mVcc	\rightarrow	578	20mA	(18 ÷ 22)mA
Shunt = 120mVcc	\rightarrow	712	20mA	(18 ÷ 22)mA

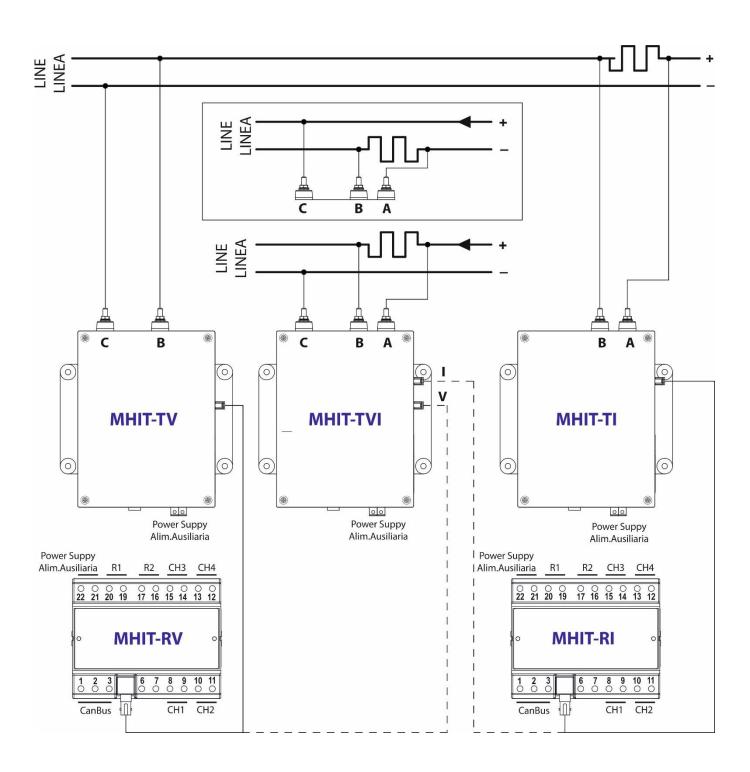
6.2 - Voltage Unit

6.2.1 - Check of zero input

Short circuit the input terminals of the Transmitter and read on the Receiver the value corrisponding to zero input: A residual measurement $\leq 0.1\%$ of full scale value is acceptable.

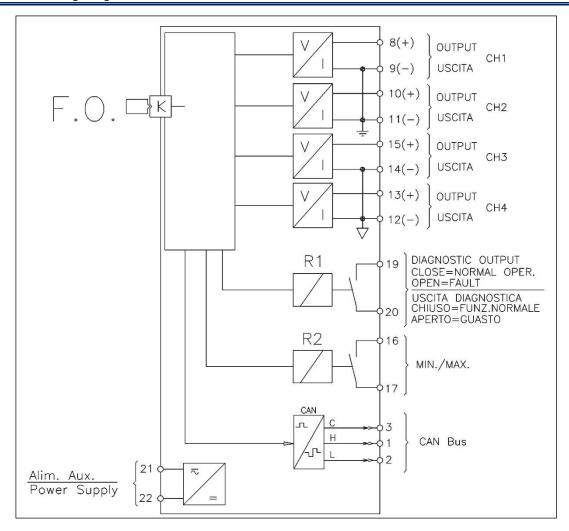
6.2.2 - Check full scale value

Apply to input terminals of the Transmitter a test voltage and check the corrisponding output of the Receiver.

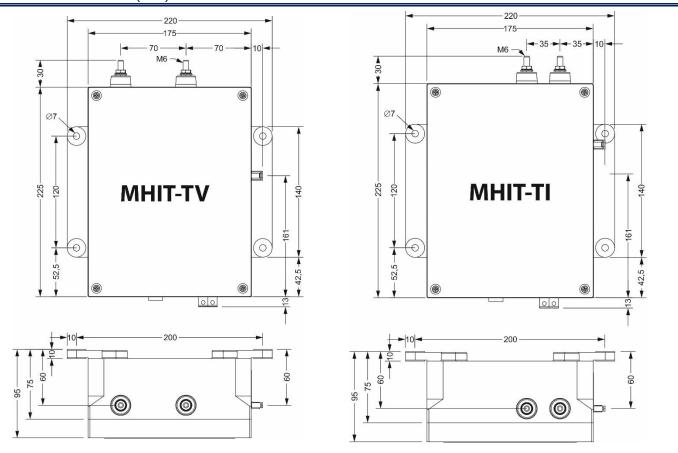

Note: This test is not made for checking the accuracy.

Test Voltage	Output	Acceptable
	(Channel 0 ÷ 2	20mA) measurement
400Vcc	\rightarrow 1mA	(0.9 ÷ 1.1)mA

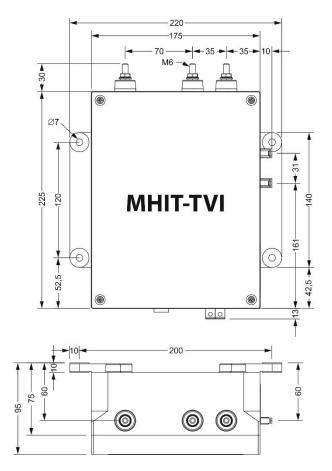
Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 11 di 16


7. Wiring Diagram

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 12 di 16



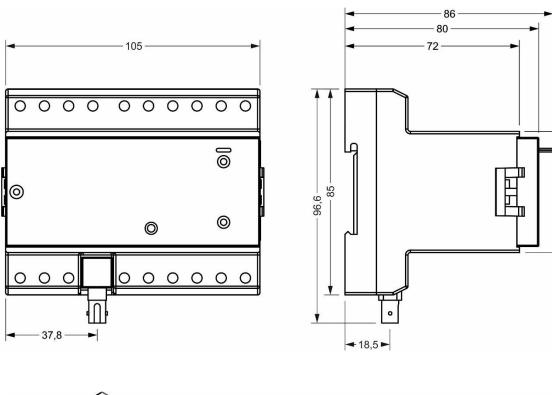
8. Receiver – Wiring Diagram

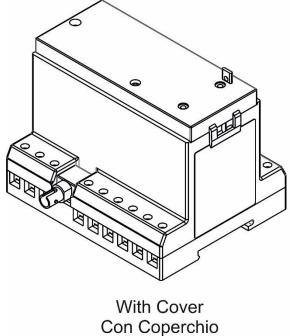


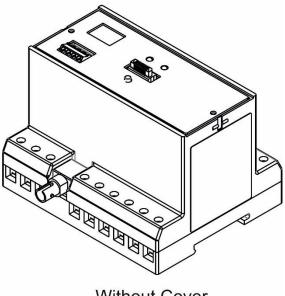
Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 13 di 16

9. Overal Dimensions (mm) - Transmitter - MHIT-TV - MHIT-TI

10. Overal Dimensions (mm) - Transmitter - MHIT-TVI




Copyright 2007


Data 22.09.2022 Rev. 6 Pag. 14 di 16

20

11. Overal Dimensions (mm) - Receiver

Without Cover Senza Coperchio

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 15 di 16

12. Elecrical Characteristics

Reference Standard	CE Directive - EN50123 - IEC60255	- RFI.DMA/IM.LA/S	SSE.360
Dielectric test voltage		IEC60255-5	cat IV – 2kV
		EN50123	(EN50124-1 cat OV4 - 18.5kV)
Impulse test voltage		IEC60255-5	cat IV – 5kV
		EN50123	(EN50124-1 cat OV4 - 40kV)

Enviromental Rif.Sto	I. (IEC 60068)			
Operation ambient tem	perature	EN 60870-2-2	class C1 (3k5)	-10 °C / +55 °C
Environmental testing	(Cold)	IEC 60068-2-1		-10 °C ; 16h
	(Dry heat)	IEC 60068-2-2		+55 °C; U.R.<=35%; 16h
	(Change of temperature)	IEC 60068-2-14		+55 °C; -10 °C; 3h
	(Damp heat, steady state)	IEC 60068-2-3		+40 °C; U.R.=93%; 96h
Resistance to vibration		IEC 60255-21-1	class 2	10-500 Hz ; 2g
Resistance to vibration	and shock (bump-shock)	IEC 60255-21-2	class 1	10g - 15g
Sismatic stress resistan	ice	IEC 60255-21-3	class 2	1 g (xy) , 2 g (z)

CE EMC Compatibility					
Electromagnetic emission	EN 55011		30-1000 MHz (tab1 EN50	081-2)	Α
Conducted disturbances immunity test	EN 55022	classe B	0.15-30 MHz (tab1 EN50081-2)	10 V	Α
Radiated electromagnetic field immunity test	EN60870-2-1 A.5.1 → IEC 61000-4-3	livello 3	80-1000 MHz 80%AM	10 V/m	В
	EN50082-2 → EN 50140, EN 50204	livello 3	900 MHz/200 Hz	10 V/m	Α
	EN50082-2 → ENV 50140	livello 3			Α
Electrostatic discharge test	EN60870-2-1 A.3.1 → IEC 61000-4-2	livello 3	6 kV contact / 8 kV air		В
Power frequency magnetic test	EN60870-2-1 A.4.1 → IEC 61000-4-8	livello 5	Continuous 100 A/m	50/60 Hz	Α
Conducted disturbances immunity test.	EN50082-2 → IEC 61000-4-6	livello 3	(80 +/-5)% AM1 kHz sinwave		Α
I Damped oscillatory magnetic field	EN60870-2-1 A.4.3 → IEC 61000-4-10	livello 3	30 A/m, 0.1-1 MHz		В
Electrical fast transient/burst (Fast Trasient)	EN60870-2-1 A.2.3 → IEC 61000-4-4	livello 3	2 kV(m.c.)		В
Dumped Oscillatory waves	EN60870-2-1 A.2.5 → IEC 61000-4-1	livello 2	1 kV(m.c.)		
Residual power supply	IEC 60870-2-1	classe DC3 classe AC2			
Power supply tollerance	IEC 60870-2-1	VR3	<=5%		
Surge immunity test	EN60870-2-1 A.2.2 → IEC 61000-4-5	livello 3	8/20us 2 kV(m.c.)		В
Voltage interruptions	EN60870-2-1 A.1.5 → IEC 61000-4-11		20 ms		
Voltage ripple	EN60870-2-1 A.1.4 → IEC 61000-4-11				A=B

Characteristics	
Accuracy at reference value of influencing factors	Class 0,2
Average power supply consumption TX	5 VA
Average power supply consumption RX	7 VA
Output relays	rating 6 A; Vn = 250 V
	A.C. resistive switching = 1500VA (400V max)
	make = 30 A (peak) 0,5 sec.; break = 0.2 A, 110 Vcc,
	$L/R = 40 \text{ ms } (100.000 \text{ op.}) - \text{Meccanichal life } 10^6 \text{ op.}$

This publication may be subject to alteration without prior notice. Therefore, a printed copy of this document may not be the latest revision. Please contact your local representative for the latest update. The trademarks MS Microelettrica Scientifica, Knorr and Knorr-Bremse as well as the figurative mark "K" are registered. Copyright © Knorr-Bremse AG and Microelettrica Scientifica SpA - all rights reserved, including industrial property rights application. Knorr-Bremse AG and Microelettrica Scientifica SpA retain any power of disposal, such as for copying and transferring.

20090 Buccinasco (MI) \cdot Via Lucania 2 \cdot Italy \cdot Tel.: +39 02 575731 E-Mail: info@microelettrica.com \cdot www.microelettrica.com

Copyright 2007 Data 22.09.2022 Rev. 6 Pag. 16 di 16