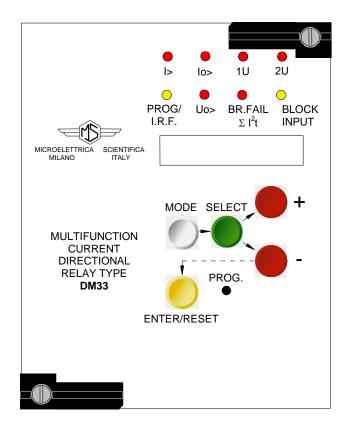


Doc. N° MO-0121-ING


Rev. 0

Pag. 1 of 33

MULTIFUNCTION MICROPROCESSOR PROTECTION RELAY DIRECTIONAL 3 PHASE OVERCURRENT + DIRECTIONAL EARTH FAULT

TYPE

DM33 OPERATION MANUAL

CE

Doc. N° MO-0121-ING

Rev. 0

Pag. **2** of **33**

INDEX

1	General utilization and commissioning directions	3
	1.1 Storage and transportation	3
	1.2 Installation	3
	1.3 Electrical connection	3
	1.4 Measuring inputs and power supply	3
	1.5 Outputs loading	3
	1.6 Protection earthing	
	1.7 Setting and calibration	3
	1.8 Safety protection	3
	1.9 Handling	3
	1.10 Maintenance	4
2	1.11 Fault detection and repair	4
2	General characteristics and operation	
	2.1 Power supply	
	Operation 2.2.1 Operation of the Phase Overcurrent element	5
	2.3 Operation of the directional earth fault element	
	2.4 Algorithm of the time current curves Clock and Calendar	
	2.5.1 Clock synchronization	10
	2.5.2 Date and time setting	10 10
	2.5.3 Time resolution	10
	2.5.3 Time resolution 2.5.4 Operation during power off	10
	2.5.5 Time tolerance	10
3	Controls and measurements	11
4	Signalization	12
5	Output relays	
6	Serial communication	13 13
7	Digital inputs	
	Test Keyboard and display operation	
10	D Reading of measurements and recorded parameters	
	10.1 ACT. MEAS	1/
	10.2 EVENT RECORDING	18
44	10.3 TRIP NUMBER I Reading of programmed settings and relay's configuration	18
12	40.4 December of two stices and the second	40
	12.1 Programming of functions settings	
12	B Manual and automatic test operation	22 23
13	13.1 W/O TRIP	
	13.2 WithTRIP	23
11	Maintenance	23
	Electrical characteristics	23
	6 Connection diagram (Standard Output)	
10	16.1 Connection Diagram (Double Output)	
17	Wiring the serial communication bus	25 26
17	Wiring the serial communication bus	20
	Change phase current rated input 1A or 5A	
19	Overall dimensions / Mounting	
) Time current curves 1/2	
	Time current curves 2/2	
22	2 Direction for pcb's draw-out and plug-in	
	22.1 Draw-out	30
	22.2 Plug-in	30
	B Keyboard operational diagram	
24	l Setting's form	32

Doc. N° MO-0121-ING

Rev. 0

Pag. 3 of 33

1. General utilization and commissioning directions

Always make reference to the specific description of the product and to the Manufacturer's instruction. Carefully observe the following warnings.

1.1 STORAGE AND TRANSPORTATION,

must comply with the environmental conditions stated on the product's instruction or by the applicable IEC standards.

1.2 INSTALLATION,

must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 ELECTRICAL CONNECTION,

must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 MEASURING INPUTS AND POWER SUPPLY,

carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 OUTPUTS LOADING,

must be compatible with their declared performance.

1.6 PROTECTION EARTHING

When earthing is required, carefully check its efficiency.

1.7 SETTING AND CALIBRATION

Carefully check the proper setting of the different functions according to the configuration of the protected system, the safety regulations and the co-ordination with other equipment.

1.8 SAFETY PROTECTION

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 HANDLING

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules. The damage caused by electrostatic discharge may not be immediately apparent but the design reliability and the long life of the product will have been reduced. The electronic circuits reduced by M.S. are completely safe from electrostatic discharge (8 KV IEC 255.22.2) when housed in their case; withdrawing the modules without proper cautions expose them to the risk of damage.

Doc. N°	MO-0121-ING
Ray	0

of **33**

Pag.

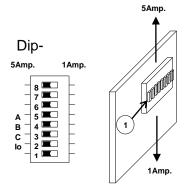
- Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.
- b. Handle the module by its front-plate, frame, or edges of the printed circuit board. Avoid touching the electronic components, printed circuit tracks or connectors.
- c. Do not pass the module to any person without first ensuring that you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- d. Place the module on an antistatic surface, or on a conducting surface which is at the same potential as yourself.
- e. Store or transport the module in a conductive bag.

More information on safe working procedures for all electronic equipment can be found in BS5783 and IEC 147-OF.

1.10 - MAINTENANCE

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

1.11 - FAULT DETECTION AND REPAIR


Internal calibrations and components should not be alterated or replaced. For repair please ask the Manufacturer or its authorised Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

2. GENERAL CHARACTERISTICS

Input quantities are supplied to 3 Voltage Transformers and to 4 Current Transformers (- three measuring phase current - one measuring the earth fault current). The rated input voltage is programmable from 50 to 125V phase-to-phase. The rated input current can be set to 1A or 5A by selecting the position of 7 dip-switches provided on relay card (see figure). The zero sequence polarizing voltage is internally reconstructed. Make electric connection in conformity with the diagram reported on relay's enclosure.

Check that input currents are same as reported on the diagram and on the test certificate.

2.1 - POWER SUPPLY

The auxiliary power is supplied by a built-in interchangeable module fully isolated an self protected. Two options are available :

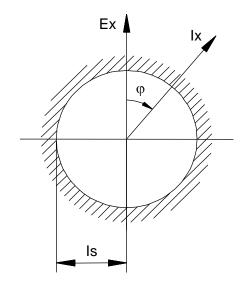
Before energising the unit check that supply voltage is within the allowed limits.

Doc. N° MO-0121-ING

Rev. C

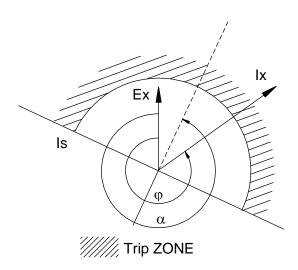
Pag. 5 of 33

2.2 - Operation


The relay performs three phase and earth fault protection. Each of the Phase Fault elements and Each of the Earth Fault elements can operate in three different ways according to the programming respectively of the variables $F\alpha$ and $F\alpha_0$.

2.2.1 - Operation of the Phase Overcurrent element

It is assumed:


- □ Is = Set minimum pick-up level of the phase overcurrent element
- \Box α = Set characteristic angle (max. torque angle)
- \Box Ix = Actual relay input current (highest among the three phase currents IA, IB, IC.)
- \Box φ = Actual displacement of current lx from the phase voltage Ex
- □ Idx = Component of Ix in the direction α

A) Programming $F\alpha = Dis$.

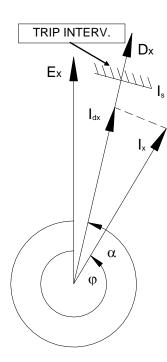
The element just operates as a non directional overcurrent element when $Ix \ge [Is]$ independently from the displacement ϕ

B) Programming $F\alpha = Sup$.

The element simply operates with supervision of the current flow direction.

The pick-up conditions are:

- □ The input phase-to-neutral Voltage Exceeds 1-2% of the rated input voltage $Vn/\sqrt{3}$.
- \Box The input current exceeds the set level Is: $Ix \ge [Is]$
- $\hfill\Box$ The displacement ϕ of Ix from Ex is within ±90° from the set direction α



Doc. N° MO-0121-ING

Rev. 0

Pag. 6 of 33

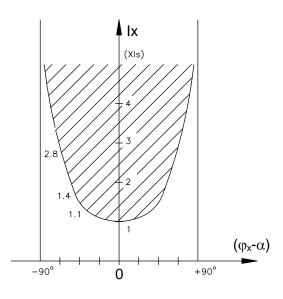
C) Programming $\underline{F\alpha} = \underline{Dir}$.

The element operates a full directional control (wattmetric operation) measuring for each phase the current:

$$I_{dA}=I_A \cos(\phi_A-\alpha)$$
 $I_{dB}=I_B \cos(\phi_B-\alpha)$ $I_{dC}=I_C \cos(\phi_C-\alpha)$

Any of the relay's phase elements initiates the operation of the overcurrent functions when the component I_{dx} of its phase current I_x in the direction Dx (vector displaced α degees from the relevant phase voltage Ex) exceeds the set pick-up level Is.

$$I_{dx} = I_x \cos(\phi_x - \alpha) \ge I_s$$


Consequently:

 $\begin{tabular}{ll} \square When ϕ_x = α & : $I_{dx}\!\!=I_x$ \to operation when $I_x\!\!>\!\!Is$ \\ \end{tabular}$

□ When $(\phi_x - \alpha) = 90^\circ$: $I_{dx} = 0 \rightarrow \underline{no}$ operation

□ When $(\phi_x$ - $\alpha) > 90° : I_{dx}$ opposite to $Dx \rightarrow \underline{no}$ operation

Operation of the phase elements is virtually independent from the magnitude of the voltage as down as 1-2% of rated voltage.

Recommended angles for different applications:

□ Measurement of active current (power) : Forward : $\alpha = 0^{\circ}$ - Reverse : $\alpha = 180^{\circ}$

□ Phase fault directional overcurrent : Forward : $\alpha = 300^{\circ}(60^{\circ} \text{ lag})$ - Reverse : $\alpha = 120^{\circ}$

□ Measurement of inductive reactive current : Forward : $\alpha = 270^{\circ}(90^{\circ} \text{ lag})$ - Reverse : $\alpha = 90^{\circ}$

□ Measurement of capacitive reactive current: Forward : $\alpha = 90^{\circ}(90^{\circ} \text{ lead})$ - Reverse : $\alpha = 270^{\circ}$

Doc. N° MO-0121-ING

Rev. 0

Pag. **7** of **33**

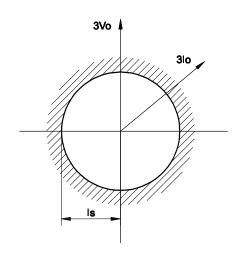
2.3 - OPERATION OF THE DIRECTIONAL EARTH FAULT ELEMENT

It is assumed:

- Is = Set minimum pick-up residual current (3lo)

- Uo = Set minimum residual voltage (level to enable Is pick-up)

 $-\alpha_0$ = Set characteristic angle (max. torque angle)


- 3lo = Relay earth fault input current

- **3Vo** = Relay earth fault input voltage

 $- \varphi_o$ = Actual Io/Vo phase displacement

- los = Component of 3lo in the direction α

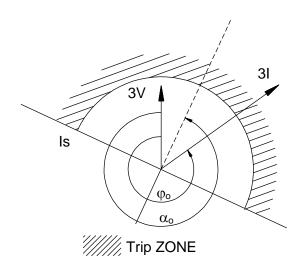
The directional earth fault element can operate in three different ways according to the programming of the variable $F\alpha_{o}$.

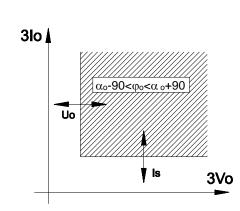
 $F\alpha_o = Dis.$

The element just operates as a normal overcurrent element without either residual voltage control (U_0) and zero sequence current displacement control (α_0)

- The element operates if : $3I_o \ge [I_s]$

 $F\alpha_o = Sup.$

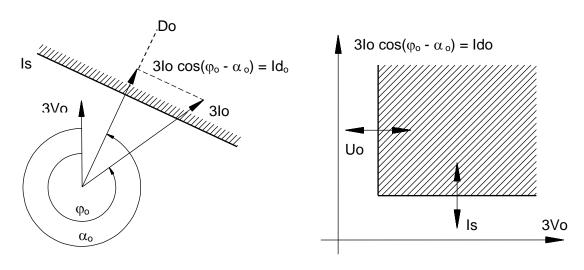

The element operates if the following 3 conditions are present:


- The input residual voltage $3V_0$ exceeds the set level U_0 $3V_0 \ge [U_0]$

- The input residual current $3I_0$ exceeds the set level I_s $3I_0 \ge [I_s]$

- The displacement φ_0 of I_0 from V_0 is within $\pm 90^\circ$ from the set direction α_0 .

$$\alpha_o$$
 - 90 $\leq \phi_o \leq \alpha_o$ + 90


Doc. N° MO-0121-ING

Rev.

8 of **33** Pag.

$F\alpha_o = Dir$

- The element performs a complete directional operation; pick-up takes place if the following conditions ere present.
- The input residual voltage $3V_o$ exceeds the set U_o : $3V_o \ge [U_o]$
- The component of the input residual current $3I_0$ in the direction α exceeds the set level I_s : $3I_0 \cos (\varphi_0 - \alpha_0) \ge [I_s]$

N.B. Angles are measured anti-clockwise from 0° to 360° (four quadrants)

Consequently:

 \rightarrow operation when 3lo ≥ ls \rightarrow no operation when $\varphi_0 = \alpha_0$ $I_{do} = 3I_{o}$

when $(\phi_0 - \alpha_0) = 90^\circ$: $I_{do} = 0$

when $(\phi_o - \alpha_o) > 90^\circ$: I_{do} opposite to $Do \rightarrow \underline{no}$ operation

Recommended angles for different application:

Isolated neutral : $\alpha_0 = 270^{\circ}$ (reverse 90° lead)

: $\alpha_o = 0^\circ$ Resistance or reactance earthed neutral

: $\alpha_{o} = 300^{\circ} (60^{\circ} \text{ lag})$ Solidly earthed neutral

Doc. N° MO-0121-ING

Rev. 0

Pag. 9 of 33

2.4 - ALGORITHM OF THE TIME CURRENT CURVES

The Time Current Curves are generally calculated with the following equation :

$$t(I) = \left[\frac{A}{\left(\frac{I}{Is}\right)^{a} - 1} + B\right] \bullet K \bullet T_{s} + t_{r} \quad \text{where} :$$

t(I) = Actual trip time delay when the input current equals I

Is = Set minimum pick-up level

$$\mathsf{K} \quad \textbf{=} \quad \left(\frac{A}{10^a-1}+B\right)^{\!-1}$$

 $\text{T}_{\text{s}} \; = \; \text{Set time delay} : \; \text{t(I)} = \text{T}_{\text{s}} \quad \text{when} \quad \frac{I}{I_{\text{s}}} = 10$

tr = Operation time of the output relay on pick-up.

The constants A, B and a have different values for the different Time Current Curves.

Curve Name	Curve Name Curve Identifier		В	а	
IEC A Inverse	Α	0.14	0	0.02	
IEC B Very Inverse	В	13.5	0	1	
IEC C Extr. Inverse	С	80	0	2	
IEEE Moderate Inverse	MI	0.0104	0.0226	0.02	
IEEE Short Inverse	SI	0.00342	0.00262	0.02	
IEEE Very Inverse	VI	3.88	0.0963	2	
IEEE Inverse		5.95	0.18	2	
IEEE Extremely Inverse	El	5.67	0.0352	2	

Doc. N°	MO-0121-ING
Rev.	0

10 of **33**

Pag.

2.5 Breaking Energy accumulation

The relay computes the Arc Energy developed during each interruption of the Circuit Breaker and accumulates these values.

When the amount of the accumulated energy exceed a settable level the relay gives out an alarm to signal that maintenance inspection of the Circuit Breaker is needed.

The operation of this function is based on the following parameters:

li = Circuit Breaker Rated Current in multiples of the Relay rated input current In; li = (0.10-9.99)In

 $\mathbf{Wc} = li^2 \bullet t_X = \text{Conventional unit of interruption energy corresponding to C/B rated current and rated interruption time.}$

 $\mathbf{W} = I^2 \bullet t_X = \text{Conventional interruption energy corresponding to interrupted current } \underline{\mathbf{I}} \text{ and rated interruption time.}$

Wi = (1 – 9999)W = Maximum allowed amount of accumulated interruption energy before maintenance as stated by the C/B Manufactured. Wi is set as a multiple of the conventional interruption energy unit Wc.

Any time the Circuit Breaker opens (digital input shorted by C/B Normally Closed contact 52b) the relay accumulates the energy corresponding to a number of conventional interruption units.

$$nW_C = \frac{I^2 \cdot t_X}{Ii^2 \cdot t_X}$$

When the amount of accumulated energy exceeds the set value [Wi] the relay energized a user programmable output relay.

This relays can not be reset unless a "clear" procedure is entered.

The "clear" procedure is accomplished via the relay front panel face keyboard as follows:

- Press white button "MODE" to show the "PROG" mode displayed.
- Press green button "SELECT" to show the "SETTING" mode displayed.
- Operate the indirect access button "PROG" and while keeping this button pressed also press at the same time the button red "+" and red "-" and green "SELECT".
 As all the four button are pressed at the same time, the display shows "CLEAR?" release the four button "ENTER" to clear all relay recorded values (last trip – trip counters, energy accumulated).

Doc. N° MO-0121-ING

Rev. 0

Pag. 11 of 33

2.6 - CLOCK AND CALENDAR

The unit features a built in clock calendar with Years, Months, Days, Hours, Minutes, Seconds, Tenths of seconds and Hundredths of seconds.

2.6.1 - Clock synchronization.

The clock can be synchronized via the serial communication interface.

The following synchronization periods can be set: 5, 10, 15, 30, 60 minutes.

Synchronization can also be disabled, in which case the relay ignores the serial broadcast signal. In case synchronization is enabled, the unit expects to receive a sync signal at the beginning of every hour and once every T_{syn} minutes. When a sync signal is received, the clock is automatically set to the nearest expected synchronization time.

For example: if T_{syn} is 10min and a sync signal is received at 20:03:10 January the 10th, 98, then the clock is set to 20:00:00 January the 10th, 1998.

On the other hand, if the same sync signal were received at 20:06:34, the clock would be set to 20:10:00, January the 10th 98.

Note that if a sync signal is received exactly in the middle of a T_{syn} period, the clock is set to the previous expected synchronization time.

2.6.2 - Date and time setting.

When the PROG/SETTINGS menu is entered, the current date is displayed with one of the groups of digits (YY, MMM or DD) blinking.

The DOWN key operates as a cursor. It moves through the groups of digits in the sequence YY => MMM => DD => YY => ...

The UP key allows the user to modify the currently blinking group of digits.

If the ENTER button is pressed the currently displayed date is set.

Pressing the SELECT button the current time is displayed which can be modified using the same procedure as for the date.

If synchronization is enabled and the date (or time) is modified, the clock is stopped until a sync signal is received via the serial port. This allows the user to manually set many units and have them to start their clocks in a synchronized fashion.

If synchronization is disabled the clock is never stopped.

Note that the setting of a new time always clears 10ths and 100ths of sec.

2.6.3 - Time resolution.

The clock has a 10ms resolution. This means that any event can be time-stamped with a 10ms accuracy, although the information concerning 10ths and 100ths of sec. can be accessed only via the serial communication interface.

2.6.4 - Operation during power off.

The unit has an on board Real Time Clock which maintains time information for at least 1 hour in case of power supply failure.

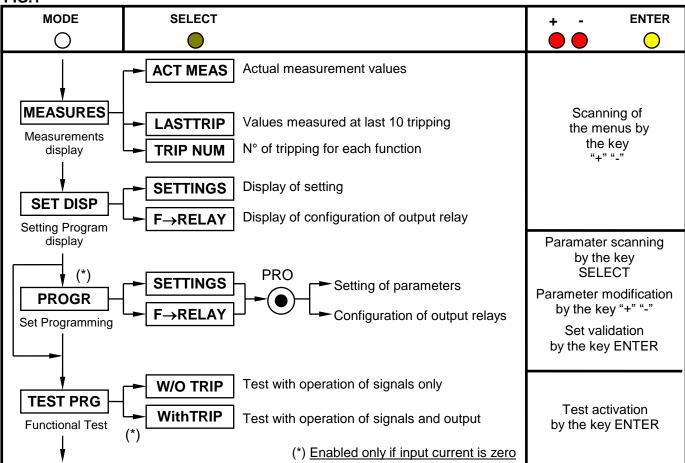
2.6.5 - Time tolerance.

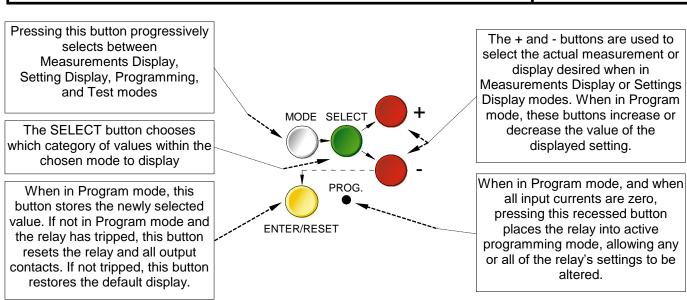
During power on, time tolerance depends on the on board crystal (+/-50ppm typ, +/-100ppm max. over full temperature range).

During power off, time tolerance depends on the RTC's oscillator (+65 /-270 ppm max over full temperature range).

Doc. N° MO-0121-ING

Rev. 0


Pag. **12** of **33**


3. CONTROLS AND MEASUREMENTS

Five key buttons allow for local management of all relay's functions.

A 8-digit high brightness alphanumerical display shows the relevant readings (xxxxxxxx) (see synoptic table fig.1)

FIG.1


Doc. N° MO-0121-ING

Rev. 0

Pag. 13 of 33

4. SIGNALIZATIONS

Eight signal leds (normally off) are provided:

a) Red LI	ED I>	Flashing when measured current exceeds the overcurrent set level.
_		Illuminated on trip after expiry of the set overcurrent trip time delay.
b) Red Li	ED lo>	same as above related to Earth Fault element
-		
c) Red Li	ED 1U	same as above related to 1U and t1U (First Voltage element).
d) Red Li	ED 2U	same as above related to 2U and t2U (Second Voltage element).
e) Yellow	LED PROG/	Flashing during the programming of the parameters or in case of
	I.R.F.	Internal Relay Fault.
f) Red Li	ED Uo>	Flashing when measured zero sequence voltage exceeds the set
		level Uo
		Illuminated on trip after expiry of the set trip time delay tUo
g) Red Li	ED BR.FAIL.	Illuminated when the BREAKER FAILURE function is activated.
	Σ l ² t	Flashing when the maintenance Breaking Energy Level is exceeded
h) Yellow	LED BLOCK	Flashing when a blocking signals present at the relevant input
	INPUT	terminals 1 – 2 or 1 – 3.

The reset of the leds takes place as follows:

□ Leds a,b,c,d,g	:	From flashing to off, automatically when the lit-on cause disappears. From ON to OFF, by "ENTER/RESET" push button only if the tripping cause has disappeared.
□ Leds e,f,h	:	From ON to OFF, automatically when the lit-on cause disappears

In case of auxiliary power supply failure the status of the leds is recorded and reproduced when power supply is restored.

Doc. N° MO-0121-ING

Rev. 0

Pag. **14** of **33**

5. OUTPUT RELAYS

Five output relays are available (R1, R2, R3, R4, R5)

a) - The relays R1,R2,R3,R4 are normally deenergized (energised on trip); these output relays are user programmable and any of them can be associated to any (one or more) of the DM33's functions. One relay eventually associated to the instantaneous element of one of the functions, after pick-up, normally drops-out as soon as the tripping cause disappears (current below the set trip level). If the current remains above the trip level longer than the time delay programmed for the time delayed element of the some function, the drop-out of the instantaneous relay is anyhow forced after an adjustable waiting time [tBF].(Diasactivation of the blocking output eventually used to block a relay upstream in the distribution system). The timer tBF is also started at any time the relay R1 picks-up and any relays R2, R3, R4 can be programmed to be energized at the end of the delay tBF (Breaker Failure functions).

Reset of the output relays associated to any time delayed function can be programmed to take place "Automatically" (tFRes= A) as soon as the tripping cause has disappeared, or "Manually" (tFRes= M) only by operating the ENTER/RESET key on relay's front or via the serial bus.

It has to be remarked that the programming structure does not allow to associate the same relay at the same time to instantaneous and delayed elements. Therefore any relay already associated to any time delayed element cannot be associated to any instantaneous element and viceversa.

b) - The	e relay R5 ,	, normally energised	, is not progr	ammable and it	is deenergized on:
----------	---------------------	----------------------	----------------	----------------	--------------------

- internal fault
- power supply failure
- during the programming

6. SERIAL COMMUNICATION

The relays fitted with the serial communication option can be connected via a cable bus a fiber optic bus for interfacing with a Personal Computer (type IBM or compatible).

All the functionalities that can be operated locally (for example reading of input measurement and changing of relay's settings) are also possible via the serial communication interface.

Furthermore the serial port allows the user to read event recording and stored data.

The unit has a RS232 / RS485 interface and can be connected either directly to a P.C. via a dedicated cable or to a RS485 serial bus, allowing having many relays to exchange data with a single master P.C. using the same physical serial line. A RS485/232 converter is available on request.

The communication protocol is MODBUS RTU (only functions 3, 4 and 16 are implemented).

Each relay is identified by its programmable address code (NodeAd) and can be called from the P.C.

A dedicated communication software (MSCOM) for Windows 95/98/NT4 SP3 (or later) is available.

Please refer to the MSCOM instruction manual for more information Microelettrica Scientifica.

Doc. N° MO-0121-ING

Rev. 0

Pag. **15** of **33**

7. DIGITAL INPUTS

Two inputs active when the relevant terminals are shorted are provided:

□ **B2** (terminals 1 - 2) it blocks the operation of the of the time delayed elements relevant to

phase fault detection

□ **B3** (terminals 1 - 3) it blocks the operation of the time delayed elements relevant to earth

fault detection.

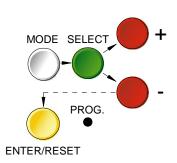
When a function is blocked the pick-up of its output is inhibited. Programming allows to have the inhibition either permanent as long as the blocking input is active or automatically removed with a programmable wait-time (see § 12.2 : tB2 , tB3) after the operation of the time delayed function. By proper interconnection of the blocking inputs output among different relays it is possible to configurate very efficient arrangements of logic fault discrimination as well as to feature a safe and quick breaker back-up protection.

□ **B4** (terminals 1 - 14) : Connected to a N.C. (52b) it detected Circuit Breaker opening

8. TEST

Besides the normal "WATCHDOG" and "POWERFAIL" functions, a comprehensive program of self-test and self-diagnostic provides:

- □ Diagnostic and functional test, with checking of program routines and memory's content, run every time the aux. power is switched-on: the display shows the type of relay and its version number.
- □ Dynamic functional test run during normal operation every 15 min. (relay's operation is suspended for less than ≤ 4ms). If any internal fault is detected, the display shows a fault message, the Led "PROG/IRF" illuminates and the relay R5 is deenergized.
- Complete test activated by the keyboard or via the communication bus either with or without tripping
 of the output relays.


Doc. N° MO-0121-ING

Rev. 0

Pag. 16 of 33

9. KEYBOARD AND DISPLAY OPERATION

All controls can be operated from relay's front or via serial communication bus. The keyboard includes five hand operable buttons (MODE) - (SELECT) - (+) - (-) - (ENTER/RESET) plus one indirect operable key (PROG) (see synoptic table a fig.1):

a) -	White key	MODE	:	when operated it enters one of the following operation modes indicated on the display:
				· · · · · · · · · · · · · · · · · · ·
		MEASURES	=	Reading of all the parameters measured and of those recorded in the memory
		SET DISP	=	Reading of the settings and of the configuration of the output relays as programmed.
		PROG	=	Access to the programming of the settings and of relay configuration.
		TEST PROG	=	Access to the manual test routines.
b) -	Green key	SELECT	:	When operated it selects one of the menus available in the actual operation MODE
c) -	Red key	"+" AND "-"	:	When operated they allow to scroll the different information available in the menu entered by the key SELECT
d) -	Yellow key	ENTER/RESET	:	It allows the validation of the programmed settings
				- the actuation of test programs
				the forcing of the default display indicationthe reset of signal Leds.
e) -	Indirect key	•	:	Enables access to the programming.

Doc. N° MO-0121-ING

Rev. 0

Pag. **17** of **33**

10. READING OF MEASUREMENTS AND RECORDED PARAMETERS

Enter the MODE "MEASURE", SELECT the menus "ACT.MEAS"-"MAX VAL"-"LASTTRIP"--"TRIP NUM", scroll available information by key "+" or "-".

10.1 - ACT.MEAS

Actual values as measured during the normal operation. The values displayed are continuously refreshed.

Display	Description					
xxXXXxx	Date : Day, Month, Year					
xx:xx:xx	Hour : Hours, Minutes, Seconds					
Fxx.xxHz	Input frequency: 40,00 - 70,00 Hz					
IA XXXXX A	True R.M.S. value of the current of phase A displayed as primary Amps.(0 - 99999)					
IB xxxxx A	As above, phase B.					
IC xxxxA	As above, phase C.					
EAx.xxEn	R.M.S. value of system's phase A-to neutral voltage					
EBx.xxEn As above phase B						
ECx.xxEn As above phase C						
loxxx.xA	zero sequence current (3lo)					
Uoxxx.xV zero sequence voltage (3Uo)						
φοxxxxx° Phase displacement of Io on Uo: (0-360° anticlockwise)						
φaxxxxx° Phase displacement of IA on EA : (0-360° anticlockwise)						
φbxxxxx° Phase displacement of IB on EB: (0-360° anticlockwise)						
φcxxxxx° Phase displacement of IC on EC : (0-360° anticlockwise)						

Doc. N° MO-0121-ING

Rev. 0

Pag. 18 of 33

10.2 - EVENT RECORDING (10 Most Recent Tripping)

Display of the function which caused the tripping of the relay plus values of the parameters at the moment of tripping. The memory buffer is refreshed at each new relay tripping.

Display	Description					
LastTr-x	Indication of the recorded event (x= 0 to 9) Example: Last event (LastTr -0) Last but one event (LastTr-1) etc					
xxXXXxx	Date : Day, Month, Year					
xx:xx:xx	Hour : Hours, Minutes, Seconds					
Cau:xxx	Display of the function which caused the last tripping: 1IA; 1IB; 1IC; 2IA; 2IB; 2IC; 3IA; 3IB; 3IC; 10; 20; 30; Uo; 1U; 2U; KA ² s.					
Fxx.xxHz	Input frequency					
IAxx.xxn	Current of phase A.					
IBxx.xxn	Current of phase B.					
ICxx.xxn	Current of phase C.					
EAx.xxEn	R.M.S. value of system's phase A-to neutral voltage					
EBx.xxEn	As above phase B					
ECx.xxEn	As above phase C					
lo.xxxOn	Earth fault current.					
Uoxxx.xV	Zero sequence voltage					
φοχχχχχ	Zero sequence displacement degrees					
φaxxxxx° Phase A displacement degrees						
φ b xxxxx°	Phase B displacement degrees					
φcxxxxx°	Phase C displacement degrees					

10.4 - TRIP NUM

Counters of the number of operations for each of the relay functions.

The memory is non-volatile and can be cancelled only with a secret procedure.

Dis	splay	Description
11	XXXXX	First phase overcurrent time delayed element
21	XXXXX	Second phase overcurrent time delayed element
31	XXXXX	Third phase overcurrent time delayed element
10	XXXXX	First Earth Fault time delayed element
20	XXXXX	Second Earth Fault time delayed element
30	XXXXX	Third Earth Fault time delayed element
Uo	XXXXX	Zero Sequence overvoltage time delayed element
1U	XXXXX	First Voltage time delayed element
2U	XXXXX	Second Voltage time delayed element
Op#	XXXX	C/B operation number
%Wi	XXXX	C/B Breaking Energy to reach maintenance level

11. READING OF PROGRAMMED SETTINGS AND RELAY'S CONFIGURATION

Enter the mode "SET DISP", select the menu "SETTINGS" or " $F \rightarrow RELAY$ ", scroll information available in the menu by keys "+" or "-".

SETTINGS = values of relay's operation parameters as programmed

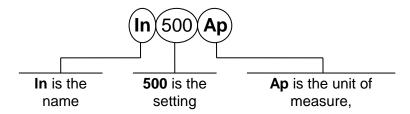
 \neg F \rightarrow RELAY = output relays associated to the different functions as programmed.

Doc. N°	MO-0121-ING
Rev.	0

19 of **33**

Pag.

12. PROGRAMMING


The relay is supplied with the standard default programming used for factory test [Values here below reported in the "Display" column].

All parameters can be modified as needed in the mode PROG and displayed in the mode SET DISP Local Programming by the front face key board is enabled only if no input current is detected (main switch open). Programming via the serial port is always enabled but a password is required to access the programming mode. The default password is the null string; in the standard application program for communication "MS-COM" it is also provided an emergency which can be disclosed on request only.

As soon as programming is enabled, the Led PRG/IRF flashes and the alarm relay R5 is deenergized.. Enter MODE "PROG" and SELECT either "SETTINGS" for programming of parameters or "F \rightarrow RELAY" for programming of output relays configuration; enable programming by the indirect operation key PROG.

The key SELECT now scrolls the available parameters. By the key (+), (-) the displayed values can be modified; to speed up parameter's variation press the key SELECT while "+" or "-" are pressed. Press key "ENTER/RESET" to validate the set values.

12.1 - PROGRAMMING OF FUNCTIONS SETTINGS

Mode PROG menu SETTINGS. (Production standard settings here under shown).

Display	Description	Setting Range	Step	Unit
xxxxxx	Current date	DDMMMYY	-	-
xx:xx:xx	Current time	HH:MM:SS	-	-
Tsyn Dis m	Synchronisation Time Expected time interval between sync. signal.	5 - 60 - Dis	5-10 15-30 60-Dis	m
Fn 50 Hz	Mains frequency	50 - 60	-	Hz
In 500Ap	Rated primary current of the phase C.Ts.	1 - 9999	1	Ар
On 500Ap	Rated primary current of the C.Ts. or of the tore C.T. supplying the zero sequence current	1 - 9999	1	Ар
UnS 100 V	P.Ts. rated secondary phase-to-phase voltage	50 – 125	0.1	V
F1 α Dir	Operation mode of the first phase O/C elements (see § 2.2.1)	DisSupDir.	-	-
1α= 90°	Reference direction of first phase fault elements	0° - 359°	1	0
F(1I) D	Operation characteristic of the first overcurrent element: (D) = Independent definite time (A) = IEC Inverse Curve type A (B) = IEC Very Inverse Curve type B (C) = IEC Extremely Inverse Curve type C (MI) = IEEE Moderate Inverse Curve (SI) = IEEE Short Inverse Curve (VI) = IEEE Very Inverse Curve (I) = IEEE Inverse Curve (EI) = IEEE Extremely Inverse Curve	DABCMSV-E	-	-

Doc. N° MO-0121-ING

Rev. 0

Pag. **20** of **33**

Display	Description	Setting Range	Step	Unit
1I 0.50ln	Trip level of first overcurrent element	0.1 - 4 - Dis	0.01	ln
11 0.5011	(p.u. of the rated current of the phase C.Ts.):	0.1 - 4 - DIS	0.01	111
t1I 0.05 s	Trip time delay of the first overcurrent element: In the dependent time operation it is the trip time delay at I = 10x[11] (see Time Current Curves)	0.05 - 42	0.01	s
B2→1I OFF	Digital Input B2 Blocks timed element 1I	ON - OFF	-	-
F2 α Dir	Operation mode of the 2 nd phase O/C element (see § 2.2.1)	DisSupDir.	-	-
2 α= 90°	Reference direction of 2 nd phase fault element	0° - 359°	1	0
2l 0.5ln	Trip level of 2 nd overcurrent element in p.u. of the rated current of the phase C.Ts.	0.1 – 40 - Dis	0.1	In
t2l 0.05 s	Trip time delay of the 2 nd overcurrent element	0.05 - 42	0.01	S
B2→2I OFF	Digital Input B2 Blocks timed element 2I	ON - OFF	-	-
2lx2 ON	Automatic doubling of level 2I on inrush	ON - OFF	-	-
F3 α Dir	Operation mode of the 3 rd phase O/C element (see § 2.2.1)	DisSupDir.	ı	-
3α= 90°	Reference direction of 3 rd phase fault element	0° - 359°	1	0
3 I 0.5In	Trip level of 3 rd overcurrent element in p.u. of the rated current of the phase C.Ts.:	0.1 – 40 - Dis	0.1	In
t3l 0.05s	Trip time delay of the 3 rd overcurrent element	0.05 - 42	0.01	S
B2→3I OFF	Digital Input B2 Blocks timed element 3I	ON - OFF	-	-
3lx2 ON	Automatic doubling of level 3I on inrush	ON - OFF	-	-
F1αo Dir	Operation mode of the first Earth Fault elements (see § 2.2.2)	DisSupDir.	-	-
1αο= 90°	Reference direction of first earth fault elements	0°- 359°	1	0
1Uo 10V	Minimum level of the zero-sequence polarizing input voltage for enabling operation of the first earth fault element	1 - 50	1	V
F(10) D	Operation characteristic of the first earth fault element (F67N): (D) = Independent definite time (A) = IEC Inverse Curve type A (B) = IEC Very Inverse Curve type B (C) = IEC Extremely Inverse Curve type C (MI) = IEEE Moderate Inverse Curve (SI) = IEEE Short Inverse Curve (VI) = IEEE Very Inverse Curve (I) = IEEE Inverse Curve (EI) = IEEE Extremely Inverse Curve	DABCMSIV-E	-	1
10 0.002 On	Trip level of first earth fault element (F67N) in p.u. of the rated current of the earth fault detection C.T.	0.002-0.4-Dis	0.001	On
t10 0.05 s	Trip time delay of first earth fault element: In the inverse time operation it is the trip time delay at $I_0 = 10x[10]$ (see Time Current Curves)	0.05 - 42	0.01	S
B3 →1 0 OFF	Digital Input B3 Blocks timed element 10	ON - OFF	-	-
F2αο Sup	Operation mode of the 2 nd Earth Fault elements (see § 2.2.2)	DisSupDir.	-	-
2αο= 90°	Reference direction of 2 nd earth fault elements	0°- 359°	1	0
2Uo 12 V	Minimum level of the zero-sequence polarizing input voltage for enabling operation of the 2 nd earth fault element	1 - 50	1	V
20 0.002 On	Trip level of 2 nd earth fault element (F67N) in p.u. of the rated current of the earth fault detection C.T.	0.002-0.8-Dis	0.001	On
t20 0.05 s	Trip time delay of 2^{nd} earth fault element: In the inverse time operation it is the trip time delay at $I_0 = 10x[20]$ (see Time Current Curves)	0.05 - 42	0.01	s
B3→20 OFF	Digital Input B3 Blocks timed element 20	ON - OFF	-	_
F3αo Dis	Operation mode of the 3 rd Earth Fault elements (see § 2.2.2)	DisSupDir.	-	-
3αο= 90°	Reference direction of 3 rd earth fault elements	0°- 359°	1	0
3Uo 15 V	Minimum level of the zero-sequence polarizing input voltage for enabling operation of the 3 rd earth fault element	1 - 50	1	V

Doc. N° MO-0121-ING

Rev. 0

Pag. 21 of 33

Display	Description	Setting Range	Step	Unit
3O 0.002 On	Trip level of third earth fault element (F67N) in p.u. of the rated current of the earth fault detection C.T.	0.002-0.8-Dis	0.001	On
t3O 0.05 s	Trip time delay of third earth fault element: In the inverse time operation it is the trip time delay at $I_0 = 10x[30]$ (see Time Current Curves)	0.05 - 42	0.01	S
B3 → 30 OFF	Digital Input B3 Blocks timed element 3O	ON - OFF	-	-
Uo 20V	Trip level of the Sequence (3Uo) overvoltage element	1 – 50 - Dis	1	V
tUo 1.00s	Trip time delay of the Zero Sequence overvoltage element	0.05 - 65	0.01	S
Un - 1u	Operation mode of the first voltage control element - = undervoltage + = overvoltage -/+ = under/over voltage Dis = function is disactivated	- + -/+ Dis	1	1
1u 10%Un	Trip differential level of the 1st voltage control element	5 - 90	1	%Un
t1u 0.1 s	Trip time delay of 1st voltage control element	0.05 - 65	0.01	S
Un - 2u	Operation mode of the second voltage control element - = undervoltage + = overvoltage -/+ = under/over voltage Dis = function is disactivated	- + -/+ Dis	-	,
2 u 20%Un	Trip differential level of the 2 nd voltage control element	5 - 90	1	%Un
t2u 0.2 s	Trip time delay of 2 nd voltage control element	0.05 - 65	0.01	S
li 1.00 ln	Rated current of the C/B	0.1 – 9.99	0.01	In
WI 100 Wc	Maximum level of accumulated breaking energy in multiples of the conventional interruption energy (see § 2.5)	1 - 9999	1	Wc
tBF 0.05s	Time delay for Breaker Failure alarm	0.05 - 0.75	0.01	S
NodAd 1	Identification number for the connection on serial communication bus	1 - 250	1	-

When Dis is programmed, the function is disactivated.

Doc. N° MO-0121-ING

Rev. 0

Pag. **22** of **33**

12.2 PROGRAMMING THE CONFIGURATION OF OUTPUT RELAYS

Mode PROG menu F→RELAY (Production standard settings here under shown).

The key "+" operates as cursor; it moves through the digits corresponding to the four programmable relays in the sequence 1,2,3,4,(1= relay R1, etc.) and makes start flashing the information actually present in the digit. The information present in the digit can be either the number of the relay (if this was already associated to the function actually on programming) or a dot (-) if the relay was not yet addressed.

The key "-" changes the existing status from the dot to the relay number or viceversa.

Dice	play	Description						
11	3-	Instantaneous element of first overcurrent (F67)	operates relay R1,R2,R3,R4.					
t1I	1	As above, time delayed element.	operates relay R1,R2,R3,R4.					
21	3-	Instantaneous element of second overcurrent (F67)	operates relay R1,R2,R3,R4.					
t2l	1	As above, time delayed element.						
	· <u>-</u>		operates relay R1,R2,R3,R4.					
31		Instantaneous element of third overcurrent (F67)	operates relay R1,R2,R3,R4.					
t3I		As above, time delayed element.	operates relay R1,R2,R3,R4.					
10	4	Instantaneous element of first earth fault element (F67N)	operates relay R1,R2,R3,R4.					
t10	-2	As above, time delayed element.	operates relay R1,R2,R3,R4.					
20	4	Instantaneous element of second earth fault element (F67N)	operates relay R1,R2,R3,R4.					
t20	-2	As above, time delayed element	operates relay R1,R2,R3,R4.					
30		Instantaneous element of third earth fault element (F67N)	operates relay R1,R2,R3,R4.					
t30		As above, time delayed element.	operates relay R1,R2,R3,R4.					
Uo		Instantaneous element of the Zero Sequence overvoltage element	operates relay R1,R2,R3,R4.					
tUo		As above, time delayed element.	operates relay R1,R2,R3,R4.					
1U		Instantaneous element of the first voltage element	operates relay R1,R2,R3,R4.					
t1U		As above, time delayed element.	operates relay R1,R2,R3,R4.					
2U		Instantaneous element of the second voltage element	operates relay R1,R2,R3,R4.					
t2U		As above, time delayed element.	operates relay R1,R2,R3,R4.					
KA2s		C/B Breaking Energy maintenance level	operates relay R1,R2,R3,R4.					
tBF		Breaker Failure signalization	operates relay R2,R3,R4.					
		The reset after tripping of the relays associated to the time delayed e	elements can take place:					
tFRES	Aut	(Aut) automatically when current drops below the trip level.	•					
		(Man) manually by the operation of the "ENTER/RESET" key.						
		The blocking of the phase fault elements can be programmed so that						
tB2 2tBF		input signal is present (tB2 Dis) or so that, even with the blocking input still present, it only lasts for						
		the set trip time delay of the function plus an additional time 2xtBF (tB2 = 2tBF)						
		The blocking of the phase fault elements can be programmed so that						
tB3 21	tBF	input signal is present (tB3 Dis) or so that, even with the blocking inp						
		the set trip time delay of the function plus an additional time 2xtBF (tB3 = 2tBF)						

Doc. N° MO-0121-ING

Rev. 0

Pag. 23 of 33

13. MANUAL AND AUTOMATIC TEST OPERATION

13.1 Mode "TESTPROG" subprogram "W/O TRIP"

Operation of the yellow key activates a complete test of the electronics and the process routines. All the leds are lit-on and the display shows (TEST RUN).

If the test routine is successfully completed the display switches-over to the default reading (xx:xx:xx). If an internal fault is detected, the display shows the fault identification code and the relay R5 is deenergized. This test can be carried-out even during the operation of the relay without affecting the relay tripping in case a fault takes place during the test itself.

13.2 Mode "TESTPROG" subprogram "WithTRIP"

Access to this program is enabled only if the current detected is zero (breaker open). Pressing the yellow key the display shows "TEST RUN?". A second operation of the yellow key starts a complete test which also includes the activation of all the output relays. The display shows (TEST RUN) with the same procedure as for the test with **W/O TRIP**.

Every 15 min during the normal operation the relay automatically initiates an auto test procedure (duration ≤ 10ms). If any internal fault is detected during the auto test, the relay R5 is deenergized, the relevant led is activated and the fault code is displayed.

WARNING

Running the **WithTRIP** test will operate all of the output relays. Care must be taken to ensure that no unexpected or harmful equipment operations will occur as a result of running this test. It is generally recommended that this test be run only in a bench test environment or after all dangerous output connections are removed.

14. MAINTENANCE

No maintenance is required. Periodically a functional check-out can be made with the test procedures described under MANUAL TEST chapter. In case of malfunctioning please contact Microelettrica Scientifica Service or the local Authorised Dealer mentioning the relay's Serial No reported in the label on relays enclosure.

WARNING

In case of Internal Relay Fault detection, proceed as here-below indicated:

- ☐ If the error message displayed is one of the following "DSP Err", "ALU Err", "KBD Err", "ADC Err", switch off power supply and switch-on again. If the message does not disappear send the relay to Microelettrica Scientifica (or its local dealer) for repair.
- If the error message displayed is "E2P Err", try to program any parameter and then run "W/OTRIP".
- □ If message disappear please check all the parameters.
- □ If message remains send the relay to Microelettrica Scientifica (or its local dealer) for repair.

Storage temperature

Humidity

DM33

Doc. N° MO-0121-ING

Rev. 0

Pag. 24 of 33

15. ELECTRICAL CHARACTERISTICS

	PROVAL : CE - RINA - UL and CSA approval File : E20 FERENCE STANDARDS IEC 60255 - EN50263 - 0		EN/IEC61000) - IEEE C37	
	Dielectric test voltage	IEC 60255-5	2kV, 50/60		
	Impulse test voltage	IEC 60255-5	5kV (c.m.),	2kV (d.m.) – 1,2/50	μS
	Climatic tests	IEC 68-2-1 - 6			
CE	EMC Compatibility (EN50081-2 - EN50082-2 - EN5020	63)			
	Electromagnetic emission		D. ENV.		
	Radiated electromagnetic field immunity test	IEC61000-4-3 ENV50204	level 3	80-1000MHz 900MHz/200Hz	10V/m 10V/m
	Conducted disturbances immunity test	IEC61000-4-6	level 3	0.15-80MHz	10V
	Electrostatic discharge test	IEC61000-4-2	level 4	6kV contact / 8kV	air
	Power frequency magnetic test	IEC61000-4-8		1000A/m	50/60Hz
	Pulse magnetic field	IEC61000-4-9		1000A/m, 8/20μs	
	Damped oscillatory magnetic field	IEC61000-4-10		100A/m, 0.1-1MHz	<u>.</u>
	Electrical fast transient/burst	IEC61000-4-4	level 4	2kV, 5kHz	
	HF disturbance test with damped oscillatory wave (1MHz burst test)	IEC60255-22-1	class 3	400pps, 2,5kV (m.	c.), 1kV (d.m.)
	Oscillatory waves (Ring waves)	IEC61000-4-12	level 4	4kV(c.m.), 2kV(d.n	n.)
	Surge immunity test	IEC61000-4-5	level 4	2kV(c.m.), 1kV(d.n	n.)
	Voltage interruptions	IEC60255-4-11			
	Resistance to vibration and shocks	IEC60255-21-1	- IEC60255	-21-2	
CH	<u>ARACTERISTICS</u>				
	Accuracy at reference value of influencing factors	2% In 0,2% On 2% +/- 10ms	for measur	e	
	Rated Current	In = 1 or 5A -	On = 1 or 5A	A	
	Current overload	200 A for 1 sec;	10A continu	os	
	Burden on current inputs			; 0.2VA at In = 5A ; 0.4VA at On = 5A	
	Rated Voltage	Un = 100V (diffe	erent on requ	est)	
	Voltage overload	2 Un continuous	3		
	Burden on voltage input	0,2 VA at Un			
	Average power supply consumption	8.5 VA			
	Output relays	rating 5 A; Vn = A.C. resistive sw make = 30 A (pe break = 0.3 A, 1 L/R = 40 ms (10	vitching = 110 eak) 0,5 sec. 10 Vcc,	00W (380V max)	
	Operation ambient temperature	-10°C / +55°C			

Microelettrica Scientifica S.p.A. - 20089 Rozzano (MI) - Italy - Via Alberelle, 56/68

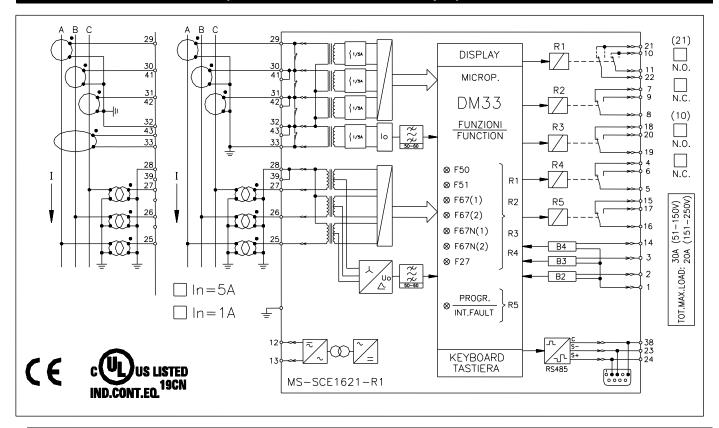
-25°C / +70°C

IEC68-2-3 RH 93% Without Condensing at 40°C

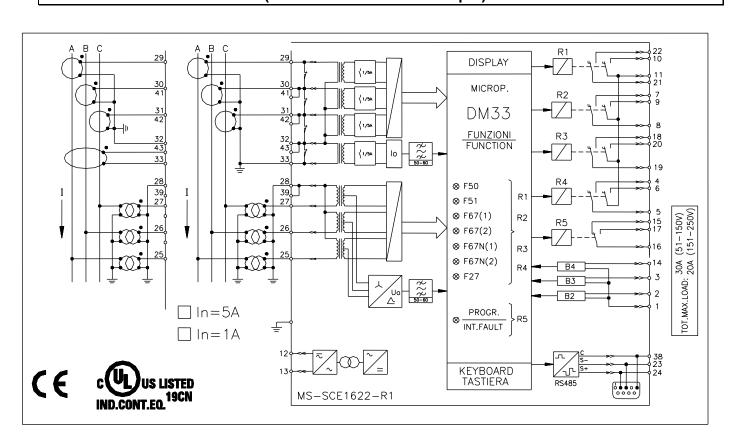
Tel. (##39) 02 575731 - Fax (##39) 02 57510940

http://www.microelettrica.com e-mail: ute@microelettrica.com

The performances and the characteristics reported in this manual are not binding and can modified at any moment without notice



Doc. N° MO-0121-ING

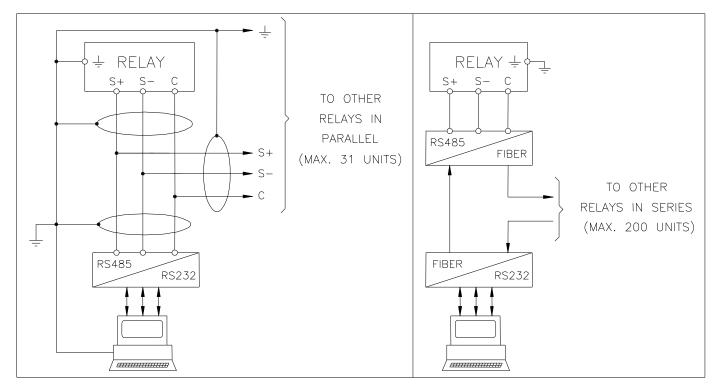

Rev. 0

Pag. 25 of 33

16. CONNECTION DIAGRAM (SCE1621 Rev.1 Standard Output)

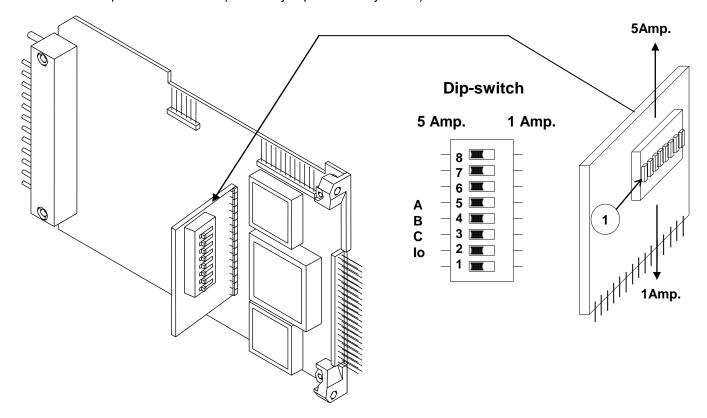
16.1 - CONNECTION DIAGRAM (SCE1622 Rev.1 Double Output)

Doc. N° MO-0121-ING


Rev. 0

Pag. 26 of 33

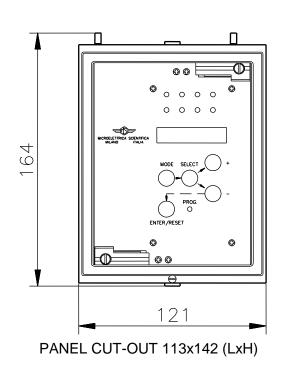
17. WIRING THE SERIAL COMMUNICATION BUS (SCE1309 Rev.0)

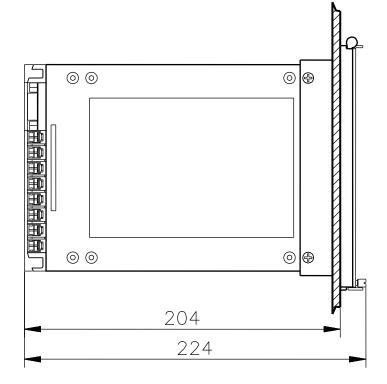

CONNECTION TO RS485

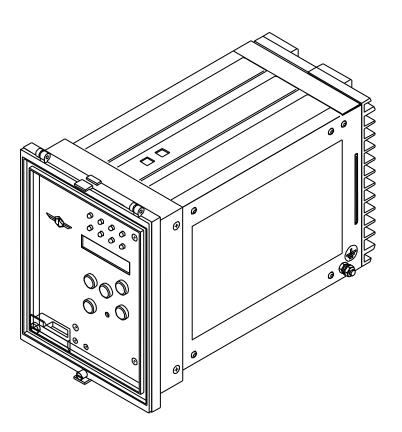
FIBER OPTIC CONNECTION

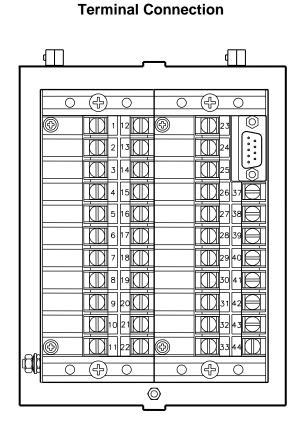
18. CHANGE PHASE CURRENT RATED INPUT 1 or 5A

Phase current input can be 1 or 5A (movable jumpers on relay's card).



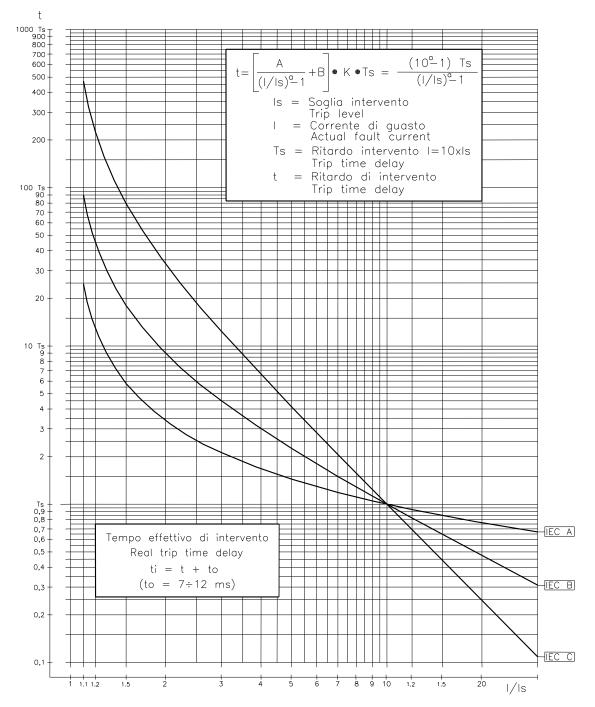

Doc. N° MO-0121-ING


Rev. 0


Pag. 27 of 33

19. OVERALL DIMENSIONS / MOUNTING

View of Rear



Doc. N° MO-0121-ING

Rev. 0

Pag. 28 of 33

20. TIME CURRENT CURVES (TU0353 Rev.0) 1/2

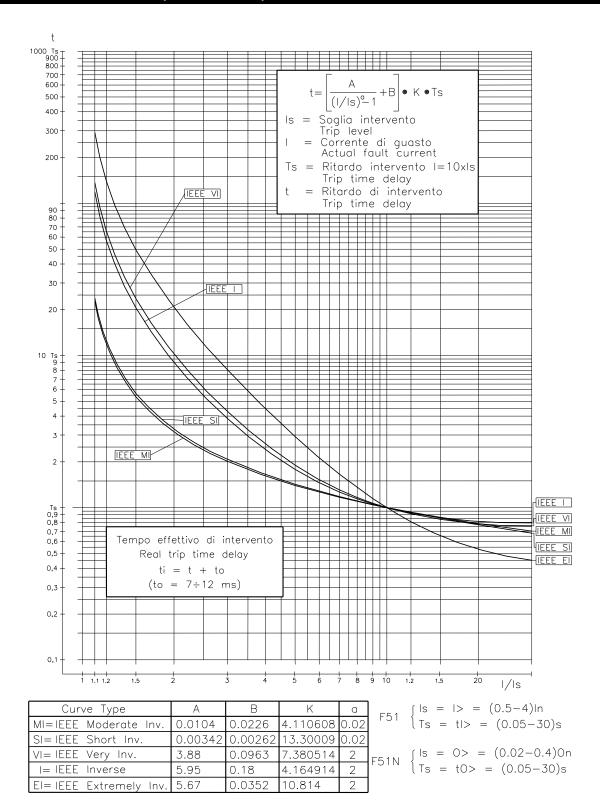
Curve Type	Α	В	K	а
IEC A	0.14	0	0.336632	0.02
IEC B	13.5	0	0.666667	1
IFC C	80	0	1 2375	2

F51 {
$$|s = l\rangle = (0.5-4) | ln$$

 $|t| = t | ln = (0.05-30) | s$

F51N
$$\begin{cases} Is = 0 > = (0.02-0.4)On \\ Ts = t0 > = (0.05-30)s \end{cases}$$

For F51 saturation at I> 50 In For F51N saturation at Io> 4 On



Doc. N° MO-0121-ING

Rev. 0

Pag. 29 of 33

21. TIME CURRENT CURVES (TU0353 Rev.0) 2/2

For F51 saturation at I> 50 In For F51N saturation at Io> 4 On

Doc. N° MO-0121-ING

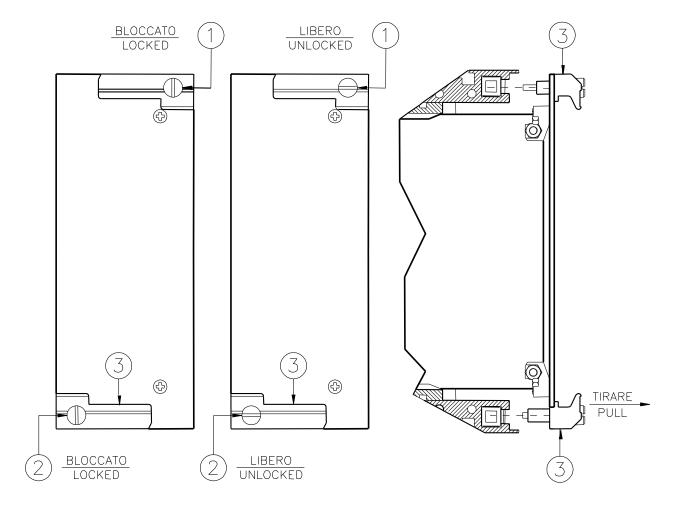
Rev. 0

Pag. **30** of **33**

22. DIRECTION FOR PCB'S DRAW-OUT AND PLUG-IN

22.1 - Draw-out

Rotate clockwise the screws $\ \ \,$ and $\ \ \,$ in the horizontal position of the screws-driver mark. Draw-out the PCB by pulling on the handle $\ \ \,$

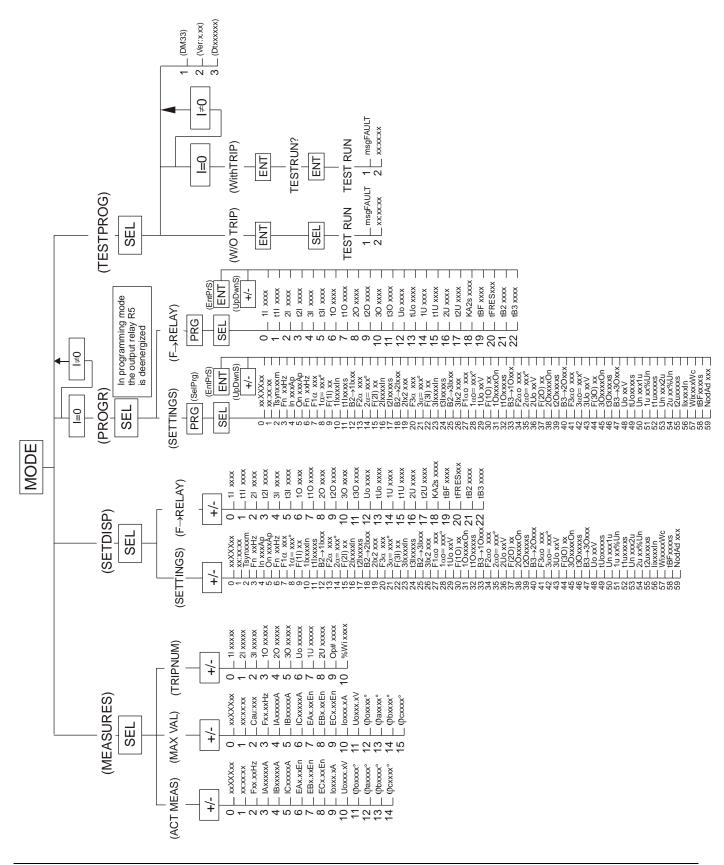

22.2 - Plug-in

Rotate clockwise the screws ① and ②in the horizontal position of the screws-driver mark.

Slide-in the card on the rails provided inside the enclosure.

Plug-in the card completely and by pressing the handle to the closed position.

Rotate anticlockwise the screws ① and ② with the mark in the vertical position (locked).



Doc. N° MO-0121-ING

Rev. 0

Pag. **31** of **33**

23. KEYBOARD OPERATIONAL DIAGRAM

Doc. N° MO-0121-ING

Rev. 0

Pag. **32** of **33**

24. Setting Form – Commissioning Test Record

Relay Type	е	DIVI33	Station :		Circuit :					
Date :		/	1	FW Version						
Power Sup	pply	☐ 24V	(-20%) / 110V(+159	6) a.c. 24V(-2	0%) / 125V(+2	20%) d.c	. Data	d Current :		□ 5A
		■ 80V	(-20%) / 220V(+159	%) a.c. 90V(-2	0%) / 250V(+2	20%) d.c	i.	u Guileili .		
	•			RELAY PRO	RAMMING		•			
					Settin	ng	Default	Actual	Test R	esult
Variable			Description		Rang		Setting		Pick-up	
VVVVVV	Curr	ent date			DDMMMY	<u>.</u>	random		-rok-up	Mesel
xxxxxxx xx:xx:xx		ent time			HH:MM:SS		random	+		
Tsyn		hronisatio	n Time		5 - 60 - Dis		Dis			
Fn	_	s frequen			50 - 60	s <u>m</u> Hz	50			
In			current of the phas	a C. Ts	1 - 9999		500	1		
On			current of the C.Ts.			Ap	500	-		
UnS			condary phase-to-p		1 - 9999 50 – 125	Ap V	100	_		
								_		
F1α			le of the first phase		DisSupD		Dir	+		
1α=			ction of first phase		0° - 359°		90			
F(1I)	elem	ent	acteristic of the firs		D-A-B-C-W SI-VI-I-EI		D			
11			st overcurrent eleme		0.1 - 4 - Di		0.50			
t1l			of the first overcur		0.05 - 42		0.05			
B2→1I)		2 Blocks timed elem		ON - OFF		OFF			
F2α			le of the 2 nd phase		DisSupD		Dir			
2α=			ction of 2 nd phase f		0° - 359°		90°			
21			d overcurrent eleme		0.1 – 40 -D	is In	0.5			
t2l			of the 2 nd overcure		0.05 - 42	S	0.05			
B2→2I			2 Blocks timed elem		ON - OFF	-	OFF			
2lx2			bling of level 2I on i		ON - OFF		ON			
F3a			le of the 3 rd phase 0		DisSupD	ir	Dir			
3α=			ction of 3 rd phase fa		0° - 359°		90°			
31			overcurrent eleme		0.1 – 40 -D		0.5			
t3l			of the 3 rd overcurr		0.05 - 42		0.05			
B2→3I			2 Blocks timed elem		ON - OFF		OFF			
3lx2			bling of level 3I on i		ON - OFF		ON			
F1α0			le of the first Earth I		DisSupD		Dir			
1αο=			ction of first earth fa		0°- 359°	-	90°			
1Uo		num level	of the zero-sequen		1 - 50	V	10			
F(10)	Oper		acteristic of the firs	t earth fault	D-A-B-C-M SI-VI-I-EI		D			
10			ı) st earth fault elemei	nt (F67N)	0.002-0.4-D		0.002			
t10			of first earth fault e		0.002-0.4-2		0.002			
B3→10			Blocks timed elem		ON - OFF		OFF			
F2αo			le of the 2 nd Earth F		DisSup		Sup			
	-				Dir.		·			
2αο=			ction of 2 nd earth fa		0°- 359°		90°	1		
2Uo	input	voltage	of the 2 nd zero-seq	-	1 - 50	V	12			
20			earth fault elemer		0.002-0.8-0		0.002			
t20			of 2 nd earth fault e	0.05 - 42		0.05				
B3→2O			Blocks timed elem	ON - OFF		OFF				
F3αο	-		le of the 3 rd Earth F		DisSup Dir.		Dis			
3αο=	Reference direction of 3 rd earth fault elements				0°- 359°	-	90°			
3Uo	Minir	num level voltage	of the 3 rd zero-sequ	uence polarizing	1 - 50	V	15			
30			rd earth fault eleme	0.002-0.8-D	Dis On	0.002	1			
t3O			of third earth fault		0.002-0.8-2		0.002	1		
			Blocks timed elem		ON - OFF		OFF			
B3→3O)		e Sequence (3Uo) o			W				
Uo	elem		e Sequence (300) (overvoitage	1 – 50 - Di	s V	20			

Doc. N° MO-0121-ING

Rev. 0

Pag. 33 of 33

tUo	Trip time delay of the Zero Sequence overvoltage element	0.05 - 65	s	1.00		
Un	Operation mode of the first voltage control element	- + -/+ Dis	1u	-		
1u	Trip differential level of the 1st voltage control element	5 - 90	%U n	10		
t1u	Trip time delay of 1st voltage control element	0.05 - 65	s	0.1		
Un	Operation mode of the second voltage control element	- + -/+ Dis	2u	-		
2u	Trip differential level of the 2 nd voltage control element	5 - 90	%U n	20		
t2u	Trip time delay of 2 nd voltage control element	0.05 - 65	s	0.2		
li	Rated current of the C/B	0.1 – 9.99	In	1.00		
WI	Maximum level of accumulated Breaking Energy	1 - 9999	Wc	100		
tBF	Time delay for Breaker Failure alarm	0.05 - 0.75	S	0.05		
NodAd	Identification number for communication bus	1 - 250	-	1	_	_

CONFIGURATION OF OUTPUT RELAYS

Default Setting			ng			Actual Setting		
Protect. Element			put ays		Description	Protect. Element	Output Relays	
11	-	-	3	-	Instantaneous element of first overcurrent (F67)	11		
t1I	1	-	-	-	As above, time delayed element.	t1I		
21	-	-	3	-	Instantaneous element of second overcurrent (F67)	21		
t2l	1	-	-	-	As above, time delayed element.	t2l		
31	-	-	-	-	Instantaneous element of third overcurrent (F67)	31		
t3I	-	-	-	-	As above, time delayed element.	t3l		
10	-	-	-	4	Instantaneous element of first earth fault element (F67N)	10		
t10	-	2	-	-	As above, time delayed element.	t10		
20	-	-	-	4	Instantaneous element of second earth fault element (F67N)	20		
t20	-	2	-	-	As above, time delayed element	t20		
30	-	-	-	-	Instantaneous element of third earth fault element (F67N)	30		
t3O	-	-	-	-	As above, time delayed element.	t3O		
Uo	-	-	-	-	Instantaneous element of the Zero Sequence overvoltage element	Uo		
tUo	-	-	-	-	As above, time delayed element.	tUo		
1U	-	-	-	-	Instantaneous element of the first voltage element	1U		
t1U	-	-	-	-	As above, time delayed element.	t1U		
2U	-	-	-	-	Instantaneous element of the second voltage element	2U		
t2U	٠	-	-	•	As above, time delayed element.	t2U		
KA2s	-	-	-	-	C/B Breaking Energy maintenance level	KA2s		
tBF		-	-	-	Breaker Failure signalization	tBF		
tFRES		Α	ut		Relay reset mode Aut = Automatic , Man = Manual	tFRES		
tB2		2tl	BF		The blocking time for phase faults	tB2		
tB3	2tBF			<u> </u>	The blocking time for earth faults	tB3		

Commissioning Engineer :	Date :	
Customer Witness :	Date :	