

Doc. N° MO-0066-ING

Rev. 0

Pag. 1 of 13

PROTECTION RELAY FOR DOUBLE WYE CONNECTED CAPACITOR BANKS

TYPE DIN30-C

OPERATION MANUAL

Copyright 1998 Microelettrica Scientifica

0	EMISSION	03-02-98	P.Brasca	D. Ciminaghi	
REV.	DESCRIPTION	DATA	PREP.	CONT.	APPR.

DIN30-C

Doc. N° MO-0066-ING

Rev. 0

Pag. **2** of **13**

INDEX

1	Gener	al utilization and commissioning directions	
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Storage and transportation3Installation3Electrical connection3Measuring inputs and power supply3Outputs loading3Protection earthing3Setting and calibration3Safety protection3Handling3Maintenance4Fault detection and repair4	
2	Gener	al characteristics and operation4	
		Input quantities are supplied to four current transformers	
	2.4	Digital Input (Terminals 15-16)	
		2 Programming "Block Input"	
	2.5 2.6	Output relays R1 – R2	
	2.6. 2.6. 2.6. 2.6. 2.6.	2 Earth Fault element F51N	0
4 5	Overa Maint	ection diagram	2 3

Doc. N° MO-0066-ING

Rev. 0

Pag. 3 of 13

1. GENERAL UTILIZATION AND COMMISSIONING DIRECTIONS

Always make reference to the specific description of the product and to the Manufacturer's instruction.

Carefully observe the following warnings.

1.1 - STORAGE AND TRANSPORTATION.

must comply with the environmental conditions stated on the product's instruction or by the applicable IEC standards.

1.2 - INSTALLATION,

must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 - ELECTRICAL CONNECTION,

must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 - MEASURING INPUTS AND POWER SUPPLY,

carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 - OUTPUTS LOADING,

must be compatible with their declared performance.

1.6 - PROTECTION EARTHING

When earthing is required, carefully check its efficiency.

1.7 - SETTING AND CALIBRATION

Carefully check the proper setting of the different functions according to the configuration of the protected system, the safety regulations and the co-ordination with other equipment.

1.8 - SAFETY PROTECTION

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 - HANDLING

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules.

The damage caused by electrostatic discharge may not be immediately apparent but the design reliability and the long life of the product will have been reduced. The electronic circuits produced by M.S. are completely safe from electrostatic discharge (15 KV IEC 255.22.2) when housed in their case; withdrawing the modules without proper cautions expose them to the risk of damage.

Doc. N° MO-0066-ING

Rev. 0

Pag. 4 of 13

1.10 - MAINTENANCE

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

1.11 - FAULT DETECTION AND REPAIR

Internal calibrations and components should not be alterated or replaced.

For repair please ask the Manufacturer or its authorised Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

2. GENERAL CHARACTERISTICS AND OPERATION

2.1 - Input quantities are supplied to four current transformers :

- 3 for phase current measurement; measurement is linear from 0.05 to 10A with resolution of 0.01A in the calculation of RMS value.

Burden: $10m\Omega (0.01VA @ 1A)$

Permissible overload: 10A permanent, 200A for 1s.

Recommended C.Ts. ≥3VA class 5P10

- 1 for measurement of unbalance current with taps for rated input $I_{on}=1$ or 5A; measurement is linear from 0.02 to $0.6I_{on}$ with resolution $0{,}005A$ in the calculation of the RMS value.

$$\begin{split} I_{on} &= 1A : burden \ 10m\Omega \ (0,01VA \ @ \ 1A) \\ I_{on} &= 5A : burden \ \ 3m\Omega \ (0,075VA \ @ \ 5A) \end{split}$$

2.2 - Power supply

Power supply input (terminals 1-2) is multi-voltage autoranging 2kV isolated has no polarity and can accept any AC or DC voltage in the range a or b - Consumption $\leq 3VA$.

$$Type\ a) - \begin{cases} 24V(-20\%) \, / \, 110V(+15\%) \ a.c. \\ \\ 24V(-20\%) \, / \, 125V(+20\%) \ d.c. \end{cases} Type\ b) - \begin{cases} 80V(-20\%) \, / \, 220V(+15\%) \ a.c. \\ \\ \\ 90V(-20\%) \, / \, 250V(+20\%) \ d.c. \end{cases}$$

Rev. 0

Pag. **5** of **13**

2.3 - Serial Communication

An RS485/RS232 serial communication port is available on relay's front. The communication is supported by a Jbus/Modbus compatible protocol.

The relay can be connected either directly to any IBM compatible P.C. via a dedicated cable or to an RS485 serial bus. The latter configuration allows the user to connect more than one relay to a P.C. via the same physical serial line.

A communication software (MS-COM) for Windows 3.11 and Windows 95 is available.

Please refer to the MS-COM instruction manual for more information.

The serial port provides the following functions/information:

- Control the Test and Reset functions
- Read the actual R.M.S. measurement of the input quantities given as a number to be related to input current (see DATA BASE)
- Read and modify all the relay's settings (trip levels/times, protection functions enable/disable, relay's configuration).
- Monitor the status of the protection elements (normal/above set level/tripped).
- Monitor the self diagnostic function (E²P error, Calibration error)

The above data can be accessed as words whose logical addresses are listed in the following table:

DIN30-C

Doc. N° MO-0066-ING

Rev. 0

Pag. 6 of 13

2.3.1 - DIN30-C : DATA BASE

Word number (.Bit Number)	Type (I, O, I/O)	Meaning	Range	Unit	Factory default
67	O	Phase A current	065535	$4238 \Rightarrow 1A^1$	//
68	О	Phase B current	065535	$4238 \Rightarrow 1A^{1}$	//
69	O	Phase C current	065535	$4238 \Rightarrow 1A^{1}$	//
70	О	Unbalance current	065535	$7063 \Rightarrow 0.1 I_{on}^2$	//
71	О	Zero sequence current	065535	$1395 \Rightarrow 1A^3$	//
72	О	Negative sequence current	065535	$2110 \Rightarrow 1A^4$	//
78.0	О	E2PROM status	0/1	0 => OK 1 => E2PROM error	//
78.1	O	Calibration status	0/1	0 => calibration completed successfully 1 => error during calibration	//
78.2 => 78.15	//	Reserved	//	//	//
80.0	О	Level of test push button	0/1	0 => test push button is depressed 1 => test push button is pressed	//
80.1	О	Level of reset push button	0/1	0 => reset push button is depressed 1 => reset push button is pressed	//
80.2	0	Status of input 1516	0/1	0 => 1516 input shorted 1 => 1516 input open	//
80.3 => 80.9	//	Reserved	//	//	//
80.10	O	Status of output relay R1	0/1	0 => relay R1 is deenergized 1 => relay R1 is energized	//
80.11	0	Status of output relay R2	0/1	0 => relay R2 is deenergized 1 => relay R2 is energized	//
80.1280.15	//	Reserved	0/1	//	//
81.0	0	Trip status, F51	0/1	0 => F51 not tripped 1 => F51 tripped	//
81.1	//	Reserved	//	//	//
81.2	O	Trip status, F51N	0/1	0 => F51N not tripped 1 => F51N tripped	//
81.3	O	Trip status, test	0/1	0 => No test trip 1 => Test trip	//
81.4	0	Trip status, F46	0/1	0 => F46 not tripped 1 => F46 tripped	//
81.5	0	Trip status, F37	0/1	0 => F37 not tripped 1 => F37 tripped	//
81.6	0	Trip status, Io	0/1	0 => I _o not tripped 1 => I _o tripped	//
81.7 => 81.15	//	Reserved	//	//	//
82.0	0	F51N pick up	0/1	0 => No F51N pick up 1 => F51N pick up	//
82.1	0	F46 pick up	0/1	0 => no F46 pick up 1 => F46 picked up	//
82.2	0	F51 pick up	0/1	0 => no F51 pick up 1 => F51 picked up	//
82.3	0	F37 pick up	0/1	0 => no F37 pick up 1 => F37 picked up	//
82.4	//	Reserved	//	//	//
82.5	0	I _o pick up	0/1	0 => no I _o pick up 1 => I _o picked up	//
82.682.15	//	Reserved	//	// // // // // // // // // // // // //	//

DIN30-C

Doc. N° MO-0066-ING

Rev. 0

Pag. **7** of **13**

Word number (.Bit Number)	Type (I, O, I/O)	Meaning	Range	Unit	Factory default
84	I/O	I >: F51 trip level	1100	0.1A	1 (=> 0.1A)
85	I/O	tI >: F51 trip delay	106000	0.01s	10 (=> 0.1s)
86	I/O	I ₂ >: F46 trip level	1075	0.01A	10 (=> 0.1A)
87	I/O	tI ₂ >: F46 trip delay	106000	0.01s	10 (=> 0.1s)
88	I/O	I _N >: F51N trip level	10500	0.01A	10 (=> 0.1A)
89	I/O	tI _N > F51N trip delay	106000	0.01s	10 (=> 0.1s)
91	I/O	F _n : mains frequency	01	0 => 50Hz 1 => 60Hz	0 (=> 50Hz)
92	I/O	I _o >: unbalance element trip level	250	0.01I _{on}	2 (0.02 I _{on})
93	I/O	$tI_0 >$: unbalance element trip delay	106000	0.01s	10 (0.1s)
100	I/O	I > => Output relays	03	0 => no output relay 1 => R2 2 => R1 3 => R1+R2	2 (I > => R1)
101	I/O	I ₂ > => Output relays	03	0 => no output relay 1 => R2 2 => R1 3 => R1+R2	$2 (I_2 > => R1)$
102	I/O	I _N > => Output relays	03	0 => no output relay 1 => R2 2 => R1 3 => R1+R2	2 (O> => R1)
103	I/O	I _o > => Output relays	03	0 => no output relay 1 => R2 2 => R1 3 => R1+R2	$1 (I_0 > => R2)$
104	I/O	I< => Output relays	03	0 => no output relay 1 => R2 2 => R1 3 => R1+R2	1 (I<=>R1)
106.0	I/O	Remote test command	0/1	0 => normal operation 1 => remote test requested	0
106.1	I/O	Remote reset command	0/1	0 => normal operation 1 => remote reset requested	0
106.2106.15	//	Reserved	//	//	//
107	I/O	TBI (see par. 2.4)	05	0.1s 0 => Dis.	1 (=> 0.1s)
109.0	I/O	F51 enable	0/1	0 => F51 disabled 1 => F51 enabled	1 (F51 enabled)
109.1	I/O	F51N enable	0/1	0 => F51N disabled 1 => F51N enabled	1 (F51N enabled)
109.2	I/O	F46 enable	0/1	0 => F46 disabled 1 => F46 enabled	1 (F46 enabled)
109.3	I/O	F37 enable	0/1	0 => F37 disabled 1 => F37 enabled	1 (F37 enabled)
109.4	I/O	Io enable	0/1	0 => I _o disabled 1 => I _o enabled	1 (I _o enabled)
109.5109.15	//	Reserved	//	//	//
110.0	I/O	1516 input blocks F51	0/1	0 => 1516 input doesn't block F51 1 => 1516 input blocks F51	0 (1516 input doesn't block F51)
110.1	I/O	1516 input blocks F51N	0/1	0 => 1516 input doesn't block F51N 1 => 1516 input blocks F51N	0 (1516 input doesn't block F51N)

Doc. N° MO-0066-ING

Rev. 0

Pag. 8 of 13

Word number (.Bit Number)	Type (I, O, I/O)	Meaning	Range	Unit	Factory default
110.2	I/O	1516 input blocks F46	0/1	0 => 1516 input doesn't block F46 1 => 1516 input blocks F46	0 (1516 input doesn't block F46)
110.3	I/O	1516 input blocks F37	0/1	0 => 1516 input doesn't block F37 1 => 1516 input blocks F37	0 (1516 input doesn't block F37)
110.4	I/O	1516 input blocks Io >	0/1	$0 \Rightarrow 1516$ input doesn't block $I_0 > 1 \Rightarrow 1516$ input blocks I_0	0 (1516 input doesn't block I _o >)
110.5	I/O	1516 input configured as blocking input	0/1	0 => 1516 input => blocking input 1 => 15.16 input => auto-reset input	0 (1516 is an auto-reset input)
110.6	I/O	R1 normally energized	0/1	0 => R1 normally de-energized 1 => R1 normally energized	0 (=> R1 normally de-energized)
110.7	I/O	R2 normally energized	0/1	0 => R2 normally de-energized 1 => R2 normally energized	0 (=> R2 normally de-energized)
110.8110.15	//	Reserved	//	//	//
111	0	Relay id string	//	//	'DI'
112	0	Relay id string	//	//	'N3'
113	0	Relay id string	//	//	' 0-'
114	0	Relay id string	//	//	'C '
123	I/O	Node address	1255	Node address	1

¹ Phase currents are represented using a conventional unit. A value equal to 4238 corresponds to 1A.

2.4 - Digital Input (Terminals 15-16)

It is electrically connected to the power supply and can be operated only by a <u>cold</u> (not energized) <u>contact.</u>

The digital input is activated when its the terminals are shorted.

The function of the Digital Input (D.I.) can be programmed via the serial port as follows:

2.4.1 - Programming "AutoReset"

The D.I. is used to control the reset mode of the output relays R1, R2.

If terminals 15-16 are shorted, reset after tripping takes place automatically as soon as the cause of the trip disappears.

If terminals 15-16 are open, reset after tripping is controlled via the Reset button on relay's front or via closing a N/O contact connected to terminals 15-16 (Remote Reset).

2.4.2 - Programming "Block Input"

The D.I. is used to increase the trip time delay of the relay's functions by the additional programmable time TBI (sec)

[TBI] = 0.1 - 0.5 - Dis.

When programmed TBI = Dis, the pick-up of the output relay is blocked as long as the D.I. is active (terminals 15-16 shorted).

This function can control one or more of relay's functions according to the values of bits 110.0..110.4 (see par. 2.3.1)

² Unbalance current is represented using a conventional unit. A value equal to 7063 corresponds to 1/10th of the nominal unbalance current.

³ Zero sequence current is represented using a conventional unit. A value equal to 1395 corresponds to 1A.

⁴ Negative sequence current is represented using a conventional unit. A value equal to 2110 corresponds to 1A

Doc. N° MO-0066-ING

Rev. 0

Pag. 9 of 13

2.5 - Output relays R1 - R2

Two contacts with a common point are controlled by relays R1 and R2 (one for each relay)

- Maximum continuous rating : 5A - 250V

Maximum switching power
 Maximum switching voltage
 250VA (5A resistive)
 250Vac - 110Vdc

- Maximum make current : 20A - 0,5s

- Maximum DC brake current : 0,2A - 110Vdc L/R=40ms

Both R1 and R2 can be configured as Normally Deenergized or Normally Energized.

R1 and R2 are programmable and any of them can be associated to any of the DIN30-C's functions. Configuration of output relays can be done via the serial communication interface.

2.6 - Signalizations and controls (see § 4)

All settings via serial communication interface software.

2.6.1 – Overcurrent element F51

 $I > = (0.1-10) \bullet A$: Trip level of overcurrent element. $tI > = (0.01-60) \bullet sec$: Trip delay of overcurrent element.

-3 - Red signal led F51

The led is:

- a) Flashing during the F51 trip time delay.
- b) Illuminated on tripping of the F51 element.

Reset from status - a - is automatic

Reset from status - b - is manual by the Reset button (11) or via the serial communication interface

This function can be enabled or disabled via the serial communication interface.

(*) The status of the LEDs is memorized even on failure of power supply

2.6.2 - Earth Fault element F51N

 $I_N > = (0.1-5) \bullet A$: earth fault pick-up current

 $tI_N > = (0.1-1)sec$: trip time delay (sec) of earth fault element.

-9- Red signal Led F51N-I_N>

Operates when the actual current $I_N \ge [I_N>]$; the led is :

- a) Flashing during the trip time delay tI_N>
- b) Illuminated on tripping after tI_N>

Reset from status - a - is automatic

Reset from status - b - is manual by the Reset button (11) or via the serial communication Interface.

This function can be enabled or disabled via the serial communication interface.

Warning: this function is automatically disabled when the maximum among the three phase currents is above 3A.

(*) The status of the LEDs is memorized even on failure of power supply

Doc. N° MO-0066-ING

Rev. 0

Pag. 10 of 13

2.6.3 – Negative sequence element F46.

 $I_2 > = (0.1 - 0.75) \bullet A$: negative sequence pick-up current

 $tI_2 > = (0.1-60)sec$: trip time delay (sec) of negative sequence element.

-(9)- Red signal Led F46

Operates when the actual current $I_2 \ge [I_2>]$; the led is :

- a) Flashing during the trip time delay tI₂>
- b) Illuminated on tripping after tI₂>

Reset from status - a - is automatic

Reset from status - b - is manual by the Reset button (11) or via the serial communication Interface.

This function can be enabled or disabled via the serial communication interface.

(*) The status of the LEDs is memorized even on failure of power supply

2.6.5 – Undercurrent F37

I < = 0.1A : trip level of the undercurrent element. tI < = 3s : trip delay of the undercurrent element.

-(13) - Yellow signal Led F37

Operates when all the phase currents are lower than [I<]; the led is :

- a) Flashing during the trip time delay tI<
- b) Illuminated on tripping after tI<

Reset from status - a - is automatic

Reset from status - b - is manual by the Reset button (11) or via the serial communication Interface.

A trip takes place when all the three phase currents drop below 0.1A for more than 3s. This function can be enabled or disabled via the serial communication interface.

2.6.6 – Unbalance element Io >

 $I_0 = 1A$ or 5A (selectable tap on terminals).

 $I_0 > = (0.02 - 0.5) \bullet I_{on}$: pick-up level of the unbalance element.

 $tI_0 > = (0.1-60)sec$: trip time delay (sec) of the unbalance element.

-(14) - Red signal Led Io >

Operates when the actual current $I_0 \ge [I_0 >]$; the led is:

- a) Flashing during the trip time delay tI₀>
- b) Illuminated on tripping after tI_o>

Reset from status - a - is automatic

Reset from status - b - is manual by the Reset button (11) or via the serial communication Interface.

This function can be enabled or disabled via the serial communication interface.

(*) The status of the LEDs is memorized even on failure of power supply

Doc. N° MO-0066-ING

Rev. 0

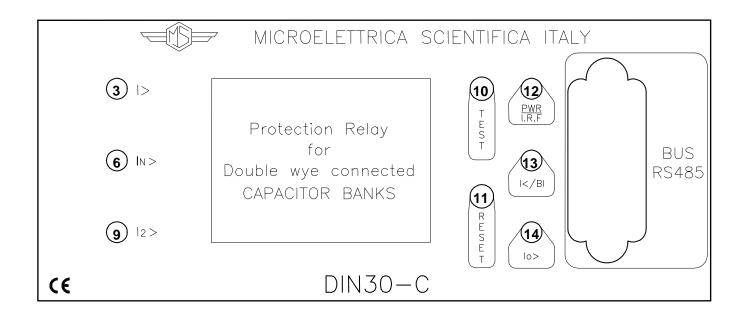
Pag. 11 of 13

-10- Test push button : - When pressed makes all the functions with relevant relays

trip and all the leds lit-on

-(11)- Reset push button : - Press to reset the signal leds after function's tripping.

When Manual Reset is programmed, this button also resets the

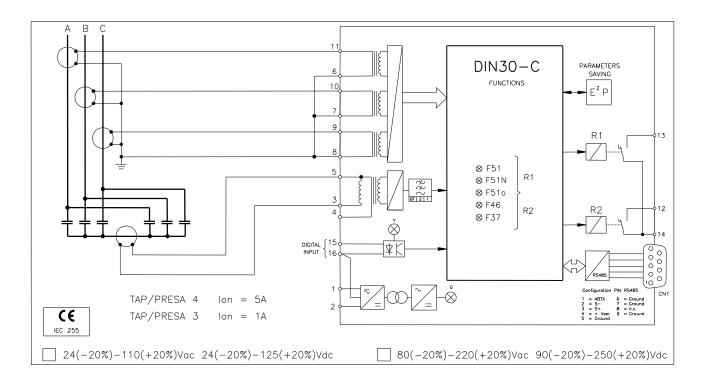

ouput relays.

-(12)- Green Led "Power Supply": - Illuminated in normal operation when power input is energized.

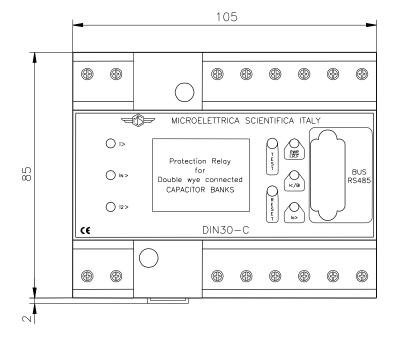
- Flashing when a relay's internal fault is detected by the

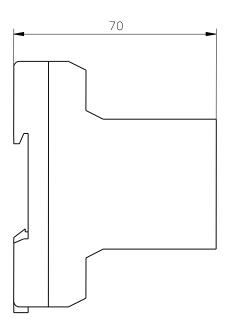
autodiagnostic function.

Fig.1


Doc. N° MO-0066-ING

Rev. 0


Pag. 12 of 13


Fig. 2

3 - CONNECTION DIAGRAM (SCE1557 Rev.0)

4 - OVERALL DIMENSIONS (D46030 Rev.1)

Doc. N° MO-0066-ING

Rev. 0

Pag. 13 of 13

5 - MAINTENANCE

No maintenance is required. Periodically a functional check-out can be made by operating the TEST button on relay's front. In case of malfunctioning please contact Microelettrica Scientifica Service or the local Authorised Dealer mentioning the relay's Serial No reported in the label on relays enclosure.

IMPORTANT NOTICE: in case of E2PROM error (green led (12) flashing after power-up or a test) try the following recover procedure:

- 1. Push the test button and then the reset button
- 2. If the error is reset (green led (12) lit) turn the relay off and then on again. Check relay's settings via the serial communication interface before restarting normal operation.
- 3. If the error is not reset repeat the operations listed at point 1.
- 4. If the error can't be corrected please contact Microelettrica Scientifica Service or the local Authorised Dealer

6 - ELECTRICAL CHARACTERISTICS

Reference standards
Dielectric test voltage
Impulse test voltage
Immunity to high frequency burst

Immunity to electrostatic discharge Immunity to sinusoidal wave burst Immunity to radiated E.M. field Immunity to 50-60 Hz magnetic field Immunity to impulse magnetic field

Immunity to magnetic burst

Resistance to vibration and shocks

Rated current phase input

Rated current residual current input

Current overload

Burden on current inputs

Average power supply consumption

Output relays

IEC 255, 801; CEI 41-1; IEEE C37; CE

2000 V, 50 Hz, 1 min.

5kV (MC), 1kV (MD) - 1,2/50μμs 1 kV (MC), 0,5 kV (MD) - 0,1 MHz 2,5 kV (MC), 1 kV (MD) - 1 MHz

15 kV

100 V - (0,01-1) MHz 10 V/m - (20-1000) MHz

1000 A/m

1000 A/m - 8/20µs 100A/m - (0,1-1) MHz 10-500 Hz - 1 g - 0,075 mm

In = 1 or 5 A

On = 1 or 5 A

200 a for 1 sec; 10 A continuos

 $Z_F=2m\Omega$ phase at In; $Z_0=3/10m\Omega$ at On = 1/5A

2,5 VA

rating 5 A; 250V AC

Max switching power = 1250VA

Max switching current = 5A (resistive)

Max switching voltage = 250V AC - 110V DC Max make current = 0,2A, 110V DC, L/R=40ms

-20°C / +60°C

 $-30^{\circ}\text{C} / +80^{\circ}\text{C}$

Operation ambient temperature Storage temperature

Microelettrica Scientifica S.p.A. - 20089 Rozzano (MI) - Italy - Via Alberelle, 56/68 Tel. (##39) 2 575731 - Fax (##39) 2 57510940 - Telex 351265 MIELIT I http://www.microelettrica.com