
Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

MICROPROCESSOR MOTOR PROTECTION RELAY WITH DIRECTIONAL EARTH FAULT ELEMENT

MM30-D OPERATION MANUAL

Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

INDEX

1	General utilization and commissioning directions	3
	1.1 Storage and transportation	3
	1.2 Installation	3
	1.3 Electrical connection	3
	1.4 Measuring inputs and power supply	3
	1.4 Measuring injures and power suppry	3
	1.5 Outputs loading	
	1.6 Protection eartning	3
	1.7 Setting and calibration	
	1.8 Safety protection	3
	1.9 Handling	3
	1.10 Maintenance	4
	1.11 Fault detection and repair	
2	General characteristics and operation	
_	General Characteristics and Operation	
	2.1 Power supply	4
	2.2 Operation an Algorithms	5
	2.2.1 Reference input variable	5
	2.2.2 Input quantities	5
	2.2.2.1 Mains Frequency	5
	2.2.2.2 Phase current inputs	5
	2.2.2.3 Earth Fault current and voltage inputs	6
	2.2.3 Function and Setting	<u>′</u>
	2.2.3.1 F49 – Thermal image	7
	2.2.3.2 F51LR – Locked Rotor Protection (Rotor jam)	8
	2.2.3.3 F46 – Current Unbalance (Negative Sequence current) protection	8
	2.2.3.4 F47 – Single Phasing	8
	2.2.3.4 F47 – Single Phasing	8
	2.2.3.6 F51 – Overcurrent protection	9
	2.2.3.7 F64 – Earth Fault protection	9
	2.2.3.8 Limitation of the Stats Number	
	2.2.3.0 Limitation of the Stats Number	10
	2.2.3.9 Starting Sequence control	10
	2.2.3.10 Autosetting	11
	2.3 Operational of the directional Earth Fault Element	
	2.4 Clock and Calendar	13
	2.4.1 Clock synchronization	13
	2.4.2 Date and time setting	13
	2.4.3 Time resolution	13
	Time resolution	13
	2.4.5 Time tolerance	13
2	2.4.0 Tille tolerance	14
3	Controls and measurements	14
4	Signalization	15
5	Output relays	16
6	Serial communication	17
7	Digital inputs	18
	Test	
	Keyboard and display operation	
	Reading of measurements and recorded parameters	
10	10.4 ACT MEAS (Actual measure)	20
	10.1 ACT. MEAS (Actual measure)	
	10.2 MAX VAL (Max values)	
	10.3 LASTTRIP (Last trip)	21
	10.4 TRIP NUM (Trip number)	21
11	Reading of programmed settings and relay's configuration	21
	2 Programming	22
	12.1 Programming of functions settings	22
	12.2 Programming of rendering Schallenge Sch	
12	B Manual and automatic test operation	25
13	12.4 Mode "TESTDDOC" outbroarem "W/O TDID "	25
	13.1 Mode "TESTPROG " subprogram " W/O TRIP "	25
	13.2 Mode "TESTPROG " subprogram " With TRIP "	25
	Maintenance	25
15	5 Power frequency insulation test	25
	5 Electrical characteristics	
	6 Connection diagram (Standard Output)	
. •	16.1 Connection Diagram (Double Output)	27
17	Wiring the sorial communication has	21
1/	7 Wiring the serial communication bus	28
18	Change phase rated input 1A or 5A	
	Thermal image curves	
20	Inverse time unbalance protection element	30
	l Direction for pcb's draw-out and plug-in	
	21.1 Draw-out	
	21.2 Plug-in	31
22	2 Overall dimensions / Mounting	
22	2 Overall dimensions / Mounting	32
	8 Keyboard operational diagram	
24	4 Setting's form	34

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

1. General utilization and commissioning directions

Always make reference to the specific description of the product and to the Manufacturer's instruction. Carefully observe the following warnings.

1.1 - STORAGE AND TRANSPORTATION,

must comply with the environmental conditions stated on the product's instruction or by the applicable IEC standards.

1.2 - INSTALLATION,

must be properly made and in compliance with the operational ambient conditions stated by the Manufacturer.

1.3 - ELECTRICAL CONNECTION,

must be made strictly according to the wiring diagram supplied with the Product, to its electrical characteristics and in compliance with the applicable standards particularly with reference to human safety.

1.4 - MEASURING INPUTS AND POWER SUPPLY,

carefully check that the value of input quantities and power supply voltage are proper and within the permissible variation limits.

1.5 - OUTPUTS LOADING,

must be compatible with their declared performance.

1.6 - PROTECTION EARTHING

When earthing is required, carefully check its effectiveness.

1.7 - SETTING AND CALIBRATION

Carefully check the proper setting of the different functions according to the configuration of the protected system, the safety regulations and the co-ordination with other equipment.

1.8 - SAFETY PROTECTION

Carefully check that all safety means are correctly mounted, apply proper seals where required and periodically check their integrity.

1.9 - HANDLING

Notwithstanding the highest practicable protection means used in designing M.S. electronic circuits, the electronic components and semiconductor devices mounted on the modules can be seriously damaged by electrostatic voltage discharge which can be experienced when handling the modules. The damage caused by electrostatic discharge may not be immediately apparent but the design reliability and the long life of the product will have been reduced. The electronic circuits reduced by M.S. are completely safe from electrostatic discharge (8 KV IEC 255.22.2) when housed in their case; withdrawing the modules without proper cautions expose them to the risk of damage.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

a. Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.

- b. Handle the module by its front-plate, frame, or edges of the printed circuit board. Avoid touching the electronic components, printed circuit tracks or connectors.
- c. Do not pass the module to any person without first ensuring that you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- d. Place the module on an antistatic surface, or on a conducting surface which is at the same potential as yourself.
- e. Store or transport the module in a conductive bag.

More information on safe working procedures for all electronic equipment can be found in BS5783 and IEC 147-OF.

1.10 - MAINTENANCE

Make reference to the instruction manual of the Manufacturer; maintenance must be carried-out by specially trained people and in strict conformity with the safety regulations.

1.11 - FAULT DETECTION AND REPAIR

Internal calibrations and components should not be altered or replaced. For repair please ask the Manufacturer or its authorised Dealers.

Misapplication of the above warnings and instruction relieves the Manufacturer of any liability.

2. GENERAL

Input currents are supplied to 3 current transformers: - two measuring phase current (the third current is computed as vector summation of the two others) - one measuring the earth fault zero-sequence current.

Phase current rated input can be 1 or 5A (Selectable by movable bridges on relay card)

Zero sequence rated input is 1A.

Zero sequence voltage input is supplied to one voltage transformer.

Rated input voltage 100V – 50/60Hz from Y/open Δ connected PT_S with ratio U₁: $\sqrt{3}$ / 100:3 V.

Make electric connection in conformity with the diagram reported on relay's enclosure.

Check that input currents are same as reported on the diagram and on the test certificate.

The auxiliary power is supplied by a built-in interchangeable module fully isolated an self protected.

2.1 POWER SUPPLY

The relay can be fitted with two different types of **power supply** module:

Before energising the unit check that supply voltage is within the allowed limits.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.2 - Operation and Algorithms

2.2.1 - Reference input variables

Display	Description	Setting Range	Step	Unit
NodAd 1	Identification number for connection serial communication	1 - 250	1	1
Fn 50 Hz	Mains frequency	50 - 60	10	Hz
In 500Ap	Rated primary current of the phase C.Ts.	1 - 9999	1	Α
On 500Ap	Rated primary current of the C.Ts. or of the tore C.T. detecting earth fault current	1 - 9999	1	А
lm 1.0 ln	Motor full-load current (p.u. of phase C.Ts. rated current)	0.1 – 1.5	0.01	In
lst 6lm	Motor starting current (p.u. of motor full load current)	0.5 – 10	0.1	lm
tst 5s	Motor starting time	1 – 120	1	S
ltr0.5lst	Switch-over current for control of two-step motor starter (p.u. of motor starting current)	Dis – 0.1 – 1	0.1	lst
tTr 6s	Max switch-over time from start-up	0.5 - 50	0.1	S

2.2.2 - Input quantities

2.2.2.1 - Mains Frequency

The relay can operate either in 50Hz or 60Hz systems.

The rated Mains Frequency "Fn "must be set accordingly.

2.2.2.2 - Phase Current inputs

The relay directly displays the r.m.s. value of the Phase Currents " IA ", " IB ", " IC " flowing in the Primary of the input Current Transformers and refers all its measurements to that value.

To make the relay properly working with any C.T., when programming the relay settings we have to input the value of the Rated Primary Current "In " of the phase C.Ts.

For the Phase Current inputs, 1A or 5A configuration can be selected by moving the jumpers J1 and J2 provided on the C.T. input card (See § 18).

Example:

- □ Phase CTs 1500/5A and Core Balance CT 100/1A
- □ Set In = 1500A and On = 100A
- □ Configure CT input card with jumpers J1, J2 in the 5A position.

Only phase A and C currents are measured, whereas the current of the phase B is computed as vector summation of the currents of the other two phases.

The algorithm is based on the following considerations coming from well-known vector relations among the three-phase currents and the zero sequence current.

- In any circumstance – currents balanced or not, sinusoidal or not – it is always true that:

(1)
$$\overline{I_A} + \overline{I_B} + \overline{I_C} + \overline{I_O} = 0$$

- When no Earth Fault exists $(I_0 = 0)$

(2)
$$\overline{I_A} + \overline{I_B} + \overline{I_C} = 0 \implies \overline{I_B} = (\overline{I_A} + \overline{I_C})$$

The earth fault protection element is independently supplied by the residual current coming either from the residual connection of the 3 system C.Ts. or from the core balance C.T.

If any Earth Fault is experienced ($I_0 \neq 0$) the Earth Fault Protection Element trips independently from the phase current measuring elements.

Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

If no Earth Fault is present ($I_0 = 0$), the equation (2) is valid, no matter if currents are balanced or not, sinusoidal or not.

The third phase current is calculated, in real time, as vector summation of the other two-phase currents.

Similarly, the Positive Sequence Current Component "Id " and Negative Sequence component "Is ", with no Earth Fault, are computed according to the normal equations of the system symmetrical components, using two currents only:

$$\begin{cases}
\overline{\overline{I}_{A}} = \overline{Id} + \overline{Is} \\
\overline{\overline{I}_{C}} = \alpha \overline{\overline{Id}} + \alpha^{2} \overline{Is}
\end{cases}
\Rightarrow
\begin{cases}
\overline{\overline{I}_{C}} - \alpha \overline{\overline{I}_{A}} = Is(\alpha^{2} - \alpha) \\
\overline{\overline{I}_{C}} - \alpha^{2} \overline{\overline{I}_{A}} = \overline{Id}(\alpha - \alpha^{2})
\end{cases}
\Rightarrow
\begin{cases}
\overline{Is}\sqrt{3} = |\overline{I}_{C} - \overline{I}_{A}e^{j120}| \\
\overline{\overline{Id}}\sqrt{3} = |\overline{I}_{C} - \overline{I}_{A}e^{j120}|
\end{cases}$$

In case of Earth Fault the Earth Fault Element trips before tripping of the unbalance element.

- During Faults
- A) Single phase to earth Fault

Trip of the earth fault element directly measuring the Residual Current.

B) Two Phase Fault

In any case one of the currents directly measured is involved, so the relay trips correctly.

C) Two Phase to Earth Fault

Same as A + B

D) Three Phase Fault

All the three currents are correctly measured (in any case two directly).

2.2.2.3 – Earth Fault Current and Voltage Inputs

The real-time measurement of the r.m.s. Earth Fault Current is displayed as percent of the rated current of the Zero sequence Current measuring C.T. (Io= xxxx %On).

The input of the E/F element can be supplied by the residual connection of 3 phase CT_S or by a dedicated Core Balance CT.

The value of the rated secondary current of the CT_S can be 1A or 5A. The configuration is made by the movable jumpers J4 provided on the CT input card (see § 18)

The Earth Fault element can operate as a normal Zero Sequence O/C element or as a Directional Zero Sequence O/C element.

In this case to discriminate the direction the relays uses as polarizing quantity the Zero Sequence Residual voltage supplied by the Open-Delta windings of the system P.Ts.

The display directly gives the measurement " Uo " of the Secondary Zero sequence voltage and the measurement " ϕ o " of the phase displacement of the Zero Sequence Current Fasor from the Zero Sequence Voltage Fasor.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.2.3 - Functions and Settings

2.2.3.1 - F49 - Thermal Image (See curves § 19)

The current "I " producing motor warming-up is computed as a conventional composition of Positive Sequence "Id " and Negative Sequence "Is " components of the motor current.

- Computed current: $I = \sqrt{ld^2 + 3ls^2}$
- Allowed overloading time (See Curve § 19)

The trip time delay " **t** " of the thermal element, depends on the warming-up time constant " **tm** " of the motor, on the previous thermal status (Ip), on the admissible continuous overload (Ib) and, of course, on the actual load (I)

$$t = tm ln \left[\frac{(I/lm)^2 - (lp/lm)^2}{(I/lm)^2 - (lb/lm)^2} \right]$$

tm = (1-60)min.

I = computed current
Ip = preheating current

lb = continuously admissible current (1-1.3)Im, step 0.01Im Im = motor rated current (0.1-1.5)In, step 0.1In

- Steady motor *cooling-down* time constant: **to** = (1-10)tm, step 1tm

The cooling-down time constant of the motor when running is "**tm**"; it is automatically changed to "**to**" when the motor current drops below 0.1 Im (running/steady motor discrimination level).

- Thermal prealarm: **Ta/n** = (50-110)%Tn, step 1%Tn

An alarm signal is issued when the simulated warming exceeds the set percentage of the motor rated temperature Tn.

Automatic 1% drop out percentage.

- Restart inhibition: **Ts/n** = (40-100)%Tn, step 1%Tn

To inhibit a new motor starting before cooling down to 99% Ts/n, reset after tripping of the thermal element takes places when T< 0.99[Ts].

Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

2.2.3.2 - F51LR - Locked Rotor Protection (Rotor jam)

At motor starting this function is disabled for the set time " **2tSt** ": when this time has elapsed, if current exceeds the set level " **ILR** ", the relay trips with a delay of " **tLR** " sec.

- Current level:

ILR = (1-5)Im, step 0.1Im. If ILR = DIS. the function is disactivated.

- Trip Time delay:

tLR = (1-25)s, step 1s

- Inhibition time of the locked rotor function:

2tSt

tSt = (1-120)s, step 1s = motor start-up time

2.2.3.2 - F46 - Current Unbalance (Negative Sequence Current) protection (See curve § 20)

Besides its contribution to the thermal image algorithm, current unbalance also controls another inverse time element

-Minimum Negative Sequence current operation level

ls = (0.1-0.8)lm, step 0.1lm. If ls = DIS. the function is disactivated.

Time current curve

tls > = (1-8)s, step 1s

Actual trip time delay is given by: $t = \frac{0.9}{ls/lm - 0.1}$ tls > (tls >= trip time at ls = lm)

" Is " is the actual Negative Sequence Current

2.2.3.4 - F47 - Single Phasing

When the relay detects the loss of the current of one phase while the currents of the other two phases are present, the Single Phasing element " 1Φ " is tripped with a fixed 3 sec. time delay.

2.2.3.5 - F37 - No-Load Running protection

This function performs the protection against no-load running: it is activated by motor under current.

- Under current level

I < = (0.15-1)Im, step 0,01Im. If I < = DIS. the function is disactivated.

When current is below 0.1lm in all phases the function is activated.

- Trip time delay = 3 sec.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.2.3.6 - F51 - Overcurrent protection

- Minimum Pick-up Current level in at least one phase :

I> = (1-5)Ist, step 0.1 Ist (limited to 20 times In)
 Ist (motor locked rotor current) = (0.5-10)Im, step 0.1Im
 If I> = DIS. the function is disactivated

- Trip time delay

tl > = (0.05-1)s, step 0,01s.

Any of the output relays can be associated to the time delayed element "tl>" as well as to the instantaneous element "l>" of this function for signalling or for blocking other relays. The output relay controlled by the l> level remains energized for the time tl> + tBO. After this delay the relay it is anyhow reset.

tBO = (0.05-0.5)s, step 0.05s.

2.2.3.7 - F64 - Earth Fault protection

Minimum Pick-up Zero Sequence Residual Current level :

 $\mathbf{O} > = (0.02 - 2) \text{On, step } 0.01 \text{On.}$

If **O>** = DIS. the function is disactivated.

- Trip time delay:

tO> = (0.05-5)s, step 0.01s.

- Minimum Residual Voltage level to enable the operation of the Zero Sequence O/C element when in the Directional mode:

Uo> = (2-25)secondary V, step 1V.

- Max torque angle in the Directional operation mode (see § 2.3):

 $\alpha = (0-359-Dis)^{\circ}$, step 1°.

When " α " is set to "Dis", the Earth Fault element works as normal non directional Overcurrent relay and the " Uo " level is disregarded.

As for function F51, any of the output relays can be associated to the instantaneous element of "**O**>" as well as to the time delayed element " **tO**> ".

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.2.3.8 - Limitation of the Starts Number

- Allowed Number of startings:

St No =
$$(1-60)$$
, step 1

If **St No** = DIS the number of startings is unlimited.

- Time interval in which the StNo is counted:

tStNo = (1-60)min. step 1 min.

If during the time "tStN" the "StNo" is attained, a new start is inhibited for the time "tBst".

- Restart Inhibition time:

 $\mathbf{tBst} = (1-60)$ min., step 1min. or Rm

On the set tBst= 0 the inhibition is disactivated

On the set tBst= Rm the inhibition is permanent until the RESET key is operated.

2.2.3.9 - Starting Sequence Control

During start-up of the motor, the unit can control an output relay used to operate the switch-over of two-step motor starters (star-delta, resistance or impedance, autotransformer, etc...) thus allowing to automatically manage the starting transition by controlling the following parameters:

- Switch-over (transition) current:

ITr = (0.1-1)Ist, step 0.1Ist

- Maximum switch-over (transition) time delay:

tTr = (0.5-50)s, step 0.1s.

At motor start counting of " **tTr** " begins. If during " **tTr** " the motor current drops below " **ltr** ", switching-over is operated; if motor current stays above " **ltr** " longer than " **tTr** ", the Locked Rotor element is activated.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.2.3.10 - Autosetting

The complexity of properly set a motor protection, frequently produces undesired tripping or non-operation of some of the functions.

The relay MM30-D can automatically select the best setting of the parameters according to motor and system basic data. These data are:

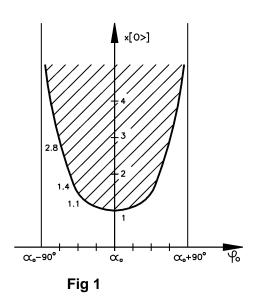
-	System frequency	=	Fn	=	50 o 60	Hz	
-	Rated primary current of phase C.Ts.	=	In	=	0-9999	Α	step 1A
-	Rated primary current of earth fault C.T	=	On	=	0-9999	Α	step 1A
-	Motor rated current	=	lm	=	0.1-1.5	In	step 0.01In
-	Motor starting current	=	lst	=	0.5-9.9	lm	step0.1 Im
-	Starting time	=	tst	=	1-120	S	step 1s
-	Transition current level	=	lTr	=	0.11	Ist	step 0.1 lst
-	Transition time	=	tTr	=	0.5-50	S	step 0,1s

Once these settings have been programmed, the "AUTOSET" function can be activated by the key "ENTER" and all the parameters are computed and automatically set at values suitable for a normal duty of the motor.

Particularly the motor warming-up time constant "tm" is computed so that the motor, when stopped after having run continuously at Rated Power (Rated current Im), can be immediately restarted at least one time.

The parameters can anyhow be manually modified if different setting is needed.

Doc. N° MO-0037-ING


Rev. 4

Date **24.02.2003**

2.3 - OPERATION OF THE DIRECTIONAL EARTH FAULT ELEMENT

It is assumed:

0>	=	Set minimum pick-up residual current : (3lo)
Uo>	=	Set minimum residual voltage (3Uo) to enable O> pick-up
αο	=	Set characteristic angle (max. torque displacement of residual current 3lo from residual voltage 3Uo).
3lo	=	Actual earth fault relay's input current
3Uo	=	Actual earth fault relay's input voltage
φΟ	=	Displacement of 3lo from 3Uo
Ιοα	=	Component of 3lo in the direction α o lo α = 3lo cos(ϕ o- α o)

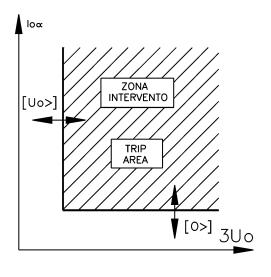


Fig.2

The relay measurement is:

3lo x cos(φ o - α o) = lo α

The relay trips when $\underline{lo\alpha>[O>]}$ (fig.2) i.e, when the component of the input current in the measuring direction of the relay exceeds the set trip level Is. [O>]

Operation is enabled only if the input zero-sequence voltage 3Uo is above the set level [Uo>].

The sensitivity of the relay is then proportional to $cos(\varphi o - \alpha o)$, it is maximum when $\varphi o = \alpha o$ and its operation field is limited within the range:

$$(\alpha o - 90^{\circ}) < \phi o < (\alpha + 90)$$
 (fig.1)

The characteristic angle of the relay must be selected according to the kind of earthing of the installation which has to be protected against earth fault; typical setting are:

□ UNEARTHED NEUTRAL α o = 90°

□ NEUTRAL EARTHED VIA RESISTOR αo = 0°

□ SOLIDLY EARTHED NEUTRAL $\alpha o = 60^{\circ}$

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

2.4 - CLOCK AND CALENDAR

The unit features a built in clock calendar with Years, Months, Days, Hours, Minutes, Seconds, Tenths of seconds and Hundredths of seconds.

2.4.1 - Clock synchronization.

The clock can be synchronized via the serial communication interface.

The following synchronization periods can be set: 5, 10, 15, 30, 60 minutes.

Synchronization can also be disabled, in which case the relay ignores the serial broadcast signal. In case synchronization is enabled, the unit expects to receive a sync signal at the beginning of every hour and once every T_{syn} minutes. When a sync signal is received, the clock is automatically set to the nearest expected synchronization time.

For example: if T_{syn} is 10min and a sync signal is received at 20:03:10 January the 10^{th} , 98, then the clock is set to 20:00:00 January the 10^{th} , 1998.

On the other hand, if the same sync signal were received at 20:06:34, the clock would be set to 20:10:00, January the 10th 98.

Note that if a sync signal is received exactly in the middle of a T_{syn} period, the clock is set to the previous expected synchronization time.

2.4.2 - Date and time setting.

When the PROG/SETTINGS menu is entered, the current date is displayed with one of the groups of digits (YY, MMM or DD) blinking.

The DOWN key operates as a cursor. It moves through the groups of digits in the sequence YY => MMM => DD => YY => ...

The UP key allows the user to modify the currently blinking group of digits.

If the ENTER button is pressed the currently displayed date is set.

Pressing the SELECT button the current time is displayed which can be modified using the same procedure as for the date.

If synchronization is enabled and the date (or time) is modified, the clock is stopped until a sync signal is received via the serial port. This allows the user to manually set many units and have them to start their clocks in a synchronized fashion.

If synchronization is disabled the clock is never stopped.

Note that the setting of a new time always clears 10ths and 100ths of sec.

2.4.3 - Time resolution.

The clock has a 10ms resolution. This means that any event can be time-stamped with a 10ms accuracy, although the information concerning 10ths and 100ths of sec. can be accessed only via the serial communication interface.

2.4.4 - Operation during power off.

The unit has an on board Real Time Clock which maintains time information for at least 1 hour in case of power supply failure.

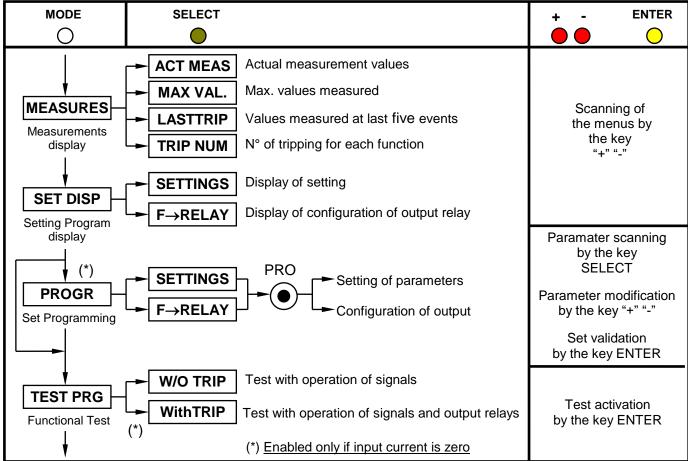
2.4.5 - Time tolerance.

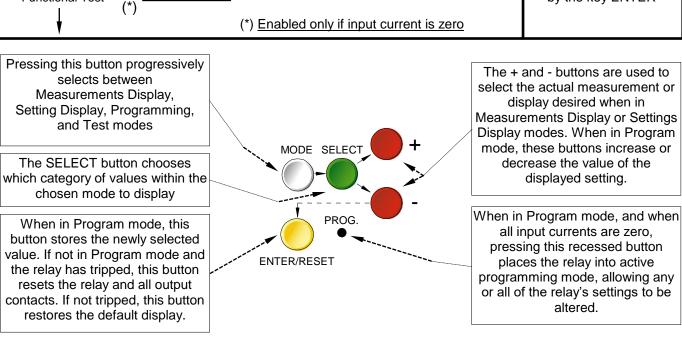
During power on, time tolerance depends on the on board crystal (+/-50ppm typ, +/-100ppm max. over full temperature range).

During power off, time tolerance depends on the RTC's oscillator (+65 /–270 ppm max over full temperature range).

Doc. N° MO-0037-ING

Rev. 4

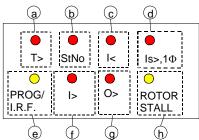

Date 24.02.2003


3. CONTROLS AND MEASUREMENTS

Five key buttons allow for local management of all relay's functions.

A 8-digit high brightness alphanumerical display shows the relevant readings (xxxxxxxx) (see synoptic table fig.1)

FIG.1


Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

4. SIGNALIZATIONS

Eight signal leds (normally off) are provided:

a)	Red LED	T>		Flashing when the motor heating "T" exceeds the set alarm level [Ta]. Illuminated on over-temperature trip. – Also illuminated on activation of RTD input.		
b)	Red LED	St No		Flashing on tripping of the element for limitation of the number of consecutive startings. Illuminated at the end of [tBSt].		
c)	Red LED	l<	<u> </u>	Flashing as soon as motor current drops below the set level [I<] Illuminated at the end of trip time delay.		
d)	Red LED	Is>,1Φ		Flashing as soon as motor unbalance exceeds the set level [Is>] Illuminated on trip after [tls>] time delay or on tripping of the single phasing element.		
e)	Yellow LED	PROG/ I.R.F.	<u> </u>	Flashing when in PROGRAM MODE Illuminated when relay internal fault is detected.		
f)	Red LED	Flashing when motor current exceeds the set level [I>] Illuminated on trip after [tI>] time delay.				
g)	Red LED	0>	<u> </u>	lashing when earth fault current exceeds the set level [O>] uminated on trip after [tO>] time delay.		
h)	Yellow LED	ROTOR STALL		Illuminated on trip of the Locked Rotor element (I>ILR) and/or on activation of the Speed Control input SpC.		
Th	e reset o	f the leds	take	es place as follows:		
	Leds		а	 From flashing to off automatically when motor heating drops below the alarm level [Ta]. From steady light to off by the Reset control (front button or serial command) provided motor heating is below the restart temperature [Ts]. 		
	Leds			 From flashing to off, automatically when the lit-on cause disappears. From ON to OFF, by "ENTER/RESET" push button only if the tripping cause has disappeared. 		
	Leds h					

In case of auxiliary power supply failure the status of the leds is recorded and reproduced when power supply is restored.

Doc. N° MO-0037-ING

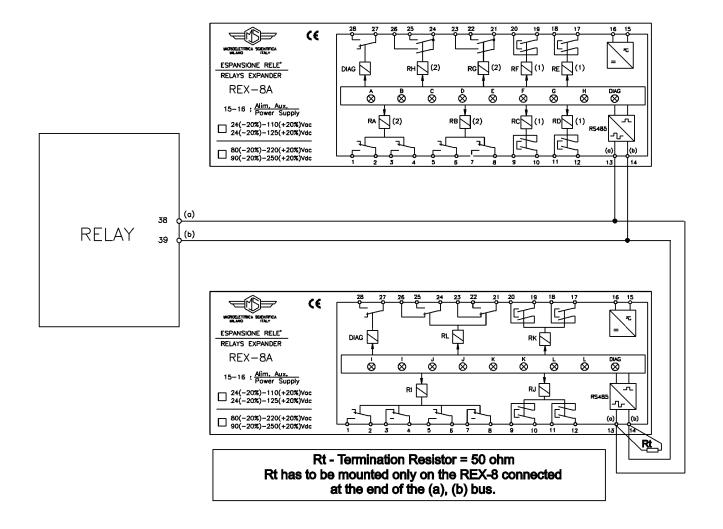
Rev. 4

Date 24.02.2003

5. OUTPUT RELAYS

The unit MM30-D includes four (R1, R2, R3, R4) user programmable plus one diagnostic (R5) output relays.

In the version MM30-DX the number of output relays can be increased by the addition of one or two optional Relay Expansion modules REX-8.


The modules REX-8 are for protruding mounting and are controlled by the master module MM30-DX via a screened twisted pair of cables connecting dedicated RS485 serial ports (see diagram herebelow). The module REX-8 includes eight (RA, RB, RC, RD, RE, RF, RH, RG) user programmable plus one (R-Diag) diagnostic output relays

The master module MM30-DX can control altogether up to sixteen output relays

- 4 internal R1 R2 R3 R4
- 8 from the first optional REX-8 module RA RB RC RD RE RF RG RH
- 4 from a second optional REX-8 module RI(RA+RB) RJ(RC+RD) RK(RE+RF) RL(RG+RH)

This second unit REX-8 is configured (by internal Dip-Switch) to operate the eight relays two by two in parallel (only four user programmable outputs with double number of available contacts)

Any of the functions featured by the MM30-D can be programmed to control up to four out of the sixteen user programmable output relays.

Doc. N° MO-0037-ING

Rev.

24.02.2003 Date

The user programmable relays (all but R5, RDIAG) are normally deenergized, i.e. energized on trip. These relays pick-up as soon as the tripping cause appears (relays controlled by the instantaneous functions) or at the end of the set trip time delay (relays controlled by time delayed functions).

The reset after trip takes place automatically as soon as the relevant tripping cause has been cleared.

The relays R5, R DIAG are not user programmable; they are normally energized and get deenergized on:

- internal fault of MM30-DX

R5 {- MM30-DX power supply failure

l- during the programming

- Internal fault of REX-8 R DIAG

1- Interruption/fault on the serial control communication

6. SERIAL COMMUNICATION

The relays fitted with the serial communication option can be connected via a cable bus or (with proper adapters) a fiber optic bus for interfacing with a Personal Computer (type IBM or compatible).

All the operations which can be performed locally (for example reading of measured data and changing of relay's settings) are also possible via the serial communication interface.

Furthermore the serial port allows the user to read the demand recording data.

The unit has a RS232 / RS485 interface and can be connected either directly to a P.C. via a dedicated cable or to a RS485 serial bus, thus having many relays to exchange data with a single master P.C. using the same physical serial line. A RS485/232 converter is available on request.

The communication protocol is MODBUS RTU (only functions 3, 4 and 16 are implemented).

Each relay is identified by its programmable address code (NodeAd) and can be called from the P.C.

A dedicated communication software (MSCOM) for Windows 95/98/NT4 SP3 (or later) is available.

Please refer to the MSCOM instruction manual for more information Microelettrica Scientifica.

35

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

7. DIGITAL INPUTS

The relay is fitted with three digital inputs activated when the relevant terminals are shorted by a cold contact:

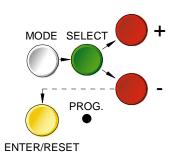
- R.T.	(terminals 1-2)	Remote Trip control. Activation of the input R.T. (Terminals 1-2 shorted) produces the following operation: The output relay associated to the function R.T. is energized The Trip Number Counter R.T. is incremented by 1 unit The event recording is activated and shows "CAUSE: RT"
- S.p.C.	(terminals 1-3)	Switch speed Control. The Speed Control input is connected to an external N/O contact which closes as soon as the motor is running. If the contact does not close within the set start time [tst] from the moment the motor is energised, the Locked Rotor function is tripped. The relay and the signal led associated to ILR are energised, the recording on Last Trip will show cause SpC and trip N° LR will be increased. If the Speed Control function is not used, it must be disactivated by programming the variable [Spc] = OFF (see § 12.1)
- RTD	(terminals 1-14)	Thermal probe. This function is enabled by programming the variable [RTD] = ON (see § 12.1) If the function is enabled, the input RTD is activated when the resistance connected to the terminals 1-14 exceeds the limits $50\Omega > R_{1-14} > 2900\Omega$. This limits respectively correspond to "Shorted Probe" (< 50Ω) or to "Overtemperature" (R>2900 Ω) The activation of the input 1-14 produces the following operation:

- □ The relay associated to R.T. is energized
- □ The Led T> is lit-on.
- □ The counter of Trip Number of the function T> is incremented
- □ LastTrip recording shows : "CAUSE RTD"
 - (*) If PT100 probes are used, it must be notified when ordering the relay.

8. TEST

Besides the normal "WATCHDOG" and "POWERFAIL" functions, a comprehensive program of self-test and self-diagnostic provides:

- Diagnostic and functional test, with checking of program routines and memory's content, run every time the aux. power is switched-on: the display shows the type of relay and its version number.
- □ Dynamic functional test run during normal operation every 15 min. (relay's operation is suspended for less than ≤4 ms). If any internal fault is detected, the display shows a fault message, the Led "PROG/IRF" illuminates and the relay R5 is deenergized.
- □ Complete test activated by the keyboard or via the communication bus either with or without tripping of the output relays.


Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

9. KEYBOARD AND DISPLAY OPERATION

All controls can be operated from relay's front or via serial communication bus. The keyboard includes five hand operable buttons (MODE) - (SELECT) - (+) - (-) - (ENTER/RESET) plus one indirect operable key (PROG) (see synoptic table a fig.1):

a) -	White key	MODE	:	when operated it enters one of the following operation modes indicated on the display:
		MEASURES	=	Reading of all the parameters measured and of those recorded in the memory
		SET DISP	=	Reading of the settings and of the configuration of the output relays as programmed.
		PROG	=	Access to the programming of the settings and of relay configuration.
		TEST PROG	=	Access to the manual test routines.
b) -	Green key	SELECT	:	When operated it selects one of the menus available in the actual operation MODE
•				
c) -	Red key	"+" AND "-"	:	When operated they allow to scroll the different information available in the menu entered by the key SELECT
d) -	Yellow key	ENTER/RESET	:	It allows the validation of the programmed settings the actuation of test programs the forcing of the default display indication the reset of signal Leds.
e) -	Indirect key	•	:	Enables access to the programming.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

10. READING OF MEASUREMENTS AND RECORDED PARAMETERS

Enter the MODE "MEASURE", SELECT the menus "ACT.MEAS"-"MAX VAL"-"LASTTRIP"--"TRIP NUM", scroll available information by key "+" or "-".

10.1 - ACT.MEAS

Actual values as measured during the normal operation.

The values displayed are continuously refreshed.

Display	Description		
xxXXXxx	Date : Day, Month, Year		
xx:xx:xx	Hour : Hours, Minutes, Seconds		
T/Tnxxx%	Actual temperature rise displayed as % of the motor full load temperature rise (0 - 999%)		
IA XXXXXA	True R.M.S. value of the current of phase A displayed as primary Amps. (0 - 99999)		
IB xxxxx A	As above, phase B.		
IC xxxxA	As above, phase C.		
loxxxxxA	As above, earth fault current.		
ld/mxxx%	Positive sequence component of motor current displayed as % of motor full load current. (0 - 999)%		
ls/mxxx%	Negative sequence component of motor current displayed as % of motor full load current. (unbalance degree) (0 - 999)%		
Uo xxxxxV	RMS Voltage displayed as primary volts (0 – 65000)		
φ ο xxx°	Phase displacement		
h xxxxx	Operation hours (0 – 65000)		

If no keys is operated in 60 sec, the display comes back to the default indication (T/Tn%)

10.2 - MAX VAL

Highest values recorded during motor run after the starting time (refreshed at each higher value) plus highest values recorded during the starting time (refreshed at each new starting).

Display	Description
T/Tnxxx%	Highest temperature recorded since the start of the run. (0 - 99,9)%
IA XXXXXA	Current of phase A measured during run after starting time (0-99999)
IB xxxxx A	As above, phase B.
IC xxxxA	As above, phase C.
loxxxxxA	As above, zero sequence current.
ld/mxxx%	Positive sequence component of motor current.
ls/mxxx%	Negative sequence component of motor current
SAxxxxA	Current of phase A at the starting time.
SBxxxxA	As above, phase B.
SCxxxxA	As above, phase C.
SoxxxxA	As above, earth fault current.
Sd/mxxx%	Positive sequence current component at starting.
Ss/mxxx%	Negative sequence current component at starting.
tStxxxxs	Measurement of the Motor Starting time.
SUoxxxxV	Zero sequence voltage at starting.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

10.3 - LASTTRIP

Recording of the last 5 trippings of the relay and values of the parameters at the moment of tripping. The memory buffer is refreshed at each new relay tripping.

Display	Description
LastTr-x	Indication of the recorded event (x= 0 to 4) Example: Last event (LastTr -0) Last but one event (LastTr-1)
	etc
xxXXXxx	Date : Day, Month, Year
xx:xx:xx	Hour: Hours, Minutes, Seconds
Causexxx	Function which caused the last tripping:
	T>; Is>; I>; O>; I<; LR; StN; ITr; SpC; RTD; RT.
IA xxxxx In	Current of phase A.
IBxxxxxIn	Current of phase B.
IC xxxxxIn	Current of phase C.
loxxxxxOn	Earth fault current.
ld/mxxx%	Positive sequence component of current.
Is/mxxx% Negative sequence component of current.	
T/Tnxxx%	Motor heating
UoxxxxxV	Zero-sequence secondary voltage
φοχχχχχ°	Io/Uo phase displacement angle in degrees.

10.4 - TRIP NUM

Counters of the number of operations for each of the relay functions.

The memory is non-volatile and can be cancelled only with a secret procedure.

Display	Description
T> xxxxx	Motor overload.
ls>xxxxx	Current unbalance.
l> xxxxx	Overcurrent.
O>xxxxx	Earth fault.
I< xxxxx	No load running.
LRxxxxx	Locked rotor.
StN>xxxx	No of consecutive startings.
ITr xxxx	Too long starting.
RT xxxx	Remote trip
1 φ xxxx	Single phasing

11. READING OF PROGRAMMED SETTINGS AND RELAY'S CONFIGURATION

Enter the mode "SET DISP", select the menu "SETTINGS" or " $F \rightarrow RELAY$ ", scroll information available in the menu by keys "+" or "-".

SETTINGS= values of relay's operation parameters as programmed

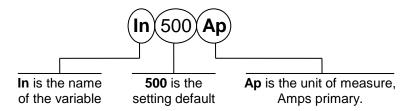
 $F \rightarrow RELAY = output relays associated to the different functions as programmed.$

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

12. PROGRAMMING


The relay is supplied with the standard default programming used for factory test. [Values here below reported in the "Display "column].

All parameters can be modified as needed in the mode PROG and displayed in the mode SET DISP Local Programming by the front face key board is enabled only if no input current is detected (main switch open). Programming via the serial port is always enabled but a password is required to access the programming mode. The default password is the null string; in the standard application program for communication "MS-COM" it is also provided an emergency password which can be disclosed on request only.

As soon as programming is enabled, the Led PRG/IRF flashes and the reclosing lock-out relay R5 is deenergized. Enter MODE "PROG" and SELECT either "SETTINGS" for programming of parameters or "F \rightarrow RELAY" for programming of output relays configuration; enable programming by the indirect operation key PROG.

The key SELECT now scrolls the available parameters. By the key (+), (-) the displayed values can be modified; to speed up parameter's variation press the key SELECT while "+" or "-" are pressed. Press key "ENTER/RESET" to validate the set values.

12.1 - PROGRAMMING OF FUNCTIONS SETTINGS

Mode PROG menu SETTINGS. (Production standard settings here under shown).

Display	Description	Setting Range	Step	Unit
xxXXXxx	Current date	DDMMMYY	-	-
xx:xx:xx	Current time	HH:MM:SS	-	-
NodAd 1	Identification number for connection on serial communication bus	1 - 250	1	1
Fn 50 Hz	Mains frequency	50 - 60	10	Hz
In 500Ap	Rated primary current of the phase C.Ts.	1 - 9999	1	Ap
On 500Ap	Rated primary current of the C.Ts. or of the tore C.T. detecting earth fault current	1 - 9999	1	Ар
lm 1.0ln	Motor full-load current (p.u. of phase C.Ts. rated current)	0.1 – 1.5	0.01	In
lst 6lm	Motor start-up current (p.u. of motor full load current)	0.5 – 10	0.1	lm
tst 5s	Motor starting time	1 – 120	1	S
ITr0.5lst	Switch-over current of motor starter (p.u. of motor starting current)	Dis – 0.1 – 1	0.1	lst
tTr 6s	Max switch-over time from reduced to full voltage operation during motor starting.	0.5 – 50	0.1	S

Doc. N° MO-0037-ING

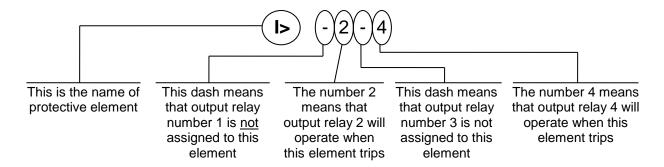
Rev. 4

Date **24.02.2003**

Display		Description	Setting Range		Unit		
AUTOSET?	+ ENTER	Automatic setting of all the following parameters computed on the					
		base of the setting of the previous	us parameters		T		
		constant of motor while running;					
tm 34min		ed to allow at least one restarting with the motor at	1 - 60	1	min		
		ad temperature		ļ.,			
to/tm 3		g motor thermal time constant	1 - 10	1	1		
Ta/n 90%		or heating level	50 - 110	1	%		
	<u> </u>	ıll-load temperature rise)		<u> </u>			
Ts/n100%	Motor restart	<u> </u>	40 - 100	1	%		
lb 1.05 lm		um continuous motor overload	1 – 1.3	0.01	lm		
StNo 6		artings allowed within the time tStNo	Dis - 1 - 60	1	-		
tStNo60m		ch the StNo is counted	1 - 60	1	m		
tBSt 12m		ion time after tripping of the function StNo	1 - 60 – Rm	1	min		
tBOt 12III		inhibited until manual RESET is operated)		·			
ILR 2lm		ocked Rotor function	Dis - 1 - 5	0.1	lm		
	· ·	r 2tst from motor start)					
tLR 5s		y of LR element during run	1 – 25	1	S		
ls> 0.3 lm		verse time current unbalance protection element	Dis-0.1-0.8	0.1	lm		
tls> 4s	Trip time delay of inverse time current unbalance protection when I2=Im		1 - 8	1	s		
I< 0.2Im	Trip level of undercurrent (no-load running) element		Dis-0.15-1	0.01	lm		
l> 2lst	Trip level of phase overcurrent element		Dis - 1 - 5	0.1	Ist		
tl> 0.1s	Trip time dela	Trip time delay of phase overcurrent element		0.01	S		
Uo> 20V	Minimum level of residual voltage for directional operation of the Earth Fault element.		2 - 25	1	V		
αο 90°	Max sensitivity displacement angle of the Earth Fault directional element. When set to Dis, operation is not directional		0 – 359 - Dis	1	0		
O> 0.1 On	Trip level of earth fault element		Dis - 0.02 - 2	0.01	On		
tO> 0.2s	<u> </u>	y of earth fault element	0.05 - 5	0.01	S		
tBO 0.15s		ergization time of the output relays associated to the					
		functions I> and/or O>	0.05 - 0.5	0.01	s		
	(Blocking outp	out with safety disactivation)					
RTD OFF		e input 1 – 14 for operation of RTD function	OFF – ON	-	-		
SpC OFF		out 1 – 3 for operation of the Speed Control function	OFF – ON	-	-		
-	Clock synchro			5-10			
Tsyn Dis m		e interval between sync. signal.	5 - 60 - Dis	15-30 60-Dis	m		

The setting Dis indicates that the function is disactivated.

35



Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

12.2 - PROGRAMMING THE CONFIGURATION OF OUTPUT RELAYS

Mode PROG menu F→RELAY (Settings out of production are here under shown).

The key "+" operates as cursor; it moves through the digits corresponding to the four relays programmable for any functions in the sequence 4-3-2-1-L-K-J-I-H-G-F-E-D-C-B-A (4=Relay R4 etc.) and makes start flashing the information actually present in the digit. The information present in the digit can be either the number/letter of the relay (if this was already associated to the function actually on programming) or a dot (-) if this place was not yet addressed.

Display		Des	Only for Version MM30-DX	
T>	1	Overload tripping	operates relay R1, R2, R3, R4	RA,RB→RL
Та		Overload prealarm tripping	operates relay R1, R2, R3, R4	RA,RB→RL
lTr		Starting switch-over tripping	operates relay R1, R2, R3, R4	RA,RB→RL
StNo	1	Start No limitation tripping	operates relay R1, R2, R3, R4	RA,RB→RL
ILR	1	Locked Rotor tripping	operates relay R1, R2, R3, R4	RA,RB→RL
tl2>	1	Time delayed unbalance tripping	operates relay R1, R2, R3, R4	RA,RB→RL
l<		No load running tripping	operates relay R1, R2, R3, R4	RA,RB→RL
l>		Instantaneous overcurrent tripping	operates relay R1, R2, R3, R4	RA,RB→RL
tl>	2	Time delayed overcurrent tripping	operates relay R1, R2, R3, R4	RA,RB→RL
0>		Instantaneous earth fault tripping	operates relay R1, R2, R3, R4	RA,RB→RL
tO>	2	Time delayed earth fault tripping	operates relay R1, R2, R3, R4	RA,RB→RL
RT		Remote trip command (input 1-2)	operates relay R1, R2, R3, R4	RA,RB→RL
1φ	1	Time delayed Phase loss tripping	operates relay R1, R2, R3, R4	RA,RB→RL

35

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

13. MANUAL AND AUTOMATIC TEST OPERATION

13.1 Mode "TESTPROG" subprogram "W/O TRIP"

Operation of the yellow key activates a complete test of the electronics and the process routines. All the leds are lit-on and the display shows (TEST RUN). If the test routine is successfully completed the display switches-over to the default reading (xx:xx:xx).

If an internal fault is detected, the display shows the fault identification code and the relay R5 is deenergized. This test can be carried-out even during the operation of the relay without affecting the relay tripping in case a fault takes place during the test itself.

13.2 Mode "TESTPROG" subprogram "WithTRIP"

Access to this program is enabled only if the current detected is zero (breaker open).

Pressing the yellow key the display shows "TEST RUN?". A second operation of the yellow key starts a complete test which also includes the activation of all the output relays.

The display shows (TEST RUN) with the same procedure as for the test with W/O TRIP.

Every 15 min during the normal operation the relay automatically initiates an auto test procedure (duration \leq 10ms). If any internal fault is detected during the auto test, the relay R5 is deenergized, the relevant led is activated and the fault code is displayed.

Further operation of key SELECT instead of the TEST programs gives the indication of the version and production date of the firmware.

Running the **WithTRIP** test will operate all of the output relays. Care must be taken to ensure that no unexpected or harmful equipment operations will occur as a result of running this test. It is generally recommended that this test be run only in a bench test environment or after all dangerous output connections are removed.

14. MAINTENANCE

No maintenance is required. Periodically a functional check-out can be made with the test procedures described under MANUAL TEST chapter. In case of malfunctioning please contact Microelettrica Scientifica Service or the local Authorised Dealer mentioning the relay's Serial No reported in the label on relays enclosure.

In case of Internal Relay Fault detection, proceed as here-below indicated:

- □ If the error message displayed is one of the following "DSP Err", "ALU Err", "KBD Err", "ADC Err", switch off power supply and switch-on again. If the message does not disappear send the relay to Microelettrica Scientifica (or its local dealer) for repair.
- □ If the error message displayed is "E2P Err", try to program any parameter and then run "W/OTRIP".
- □ If message disappear please check all the parameters.
- If message remains send the relay to Microelettrica Scientifica (or its local dealer) for repair.

15. POWER FREQUENCY INSULATION TEST

Every relay individually undergoes a factory insulation test according to IEC255-5 standard at 2 kV, 50 Hz 1min. Insulation test should not be repeated as it unusefully stresses the dielectrics. When doing the insulation test, the terminals relevant to serial output must always be short circuited to ground. When relays are mounted in switchboards or relay boards that have to undergo the insulation tests, the relay modules must be drawn-out of their enclosures and the test must only include the fixed part of the relay with its terminals and the relevant connections. This is extremely important as discharges eventually tacking place in other parts or components of the board can severely damage the relays or cause damages, not immediately evident to the electronic components.

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

15. ELECTRICAL CHARACTERISTICS

APPROVAL: CE - RINA - UL and CSA approval File: E202083							
REFERENCE STANDARDS	IEC 60255 - EN50263 - CE Directive - EN/IEC61000 - IEEE C37						

☐ Dielectric test voltage IEC 60255-5 2kV, 50/60Hz, 1 min.

□ Impulse test voltage IEC 60255-5 5kV (c.m.), 2kV (d.m.) - 1,2/50 μ s

□ Insulation resistance > $100M\Omega$

Environmental Std. Ref. (IEC 68-2-1 - 68-2-2 - 68-2-33)

□ Operation ambient temperature $-10^{\circ}\text{C} / +55^{\circ}\text{C}$ □ Storage temperature $-25^{\circ}\text{C} / +70^{\circ}\text{C}$

□ Humidity IEC68-2-3 RH 93% Without Condensing AT 40°C

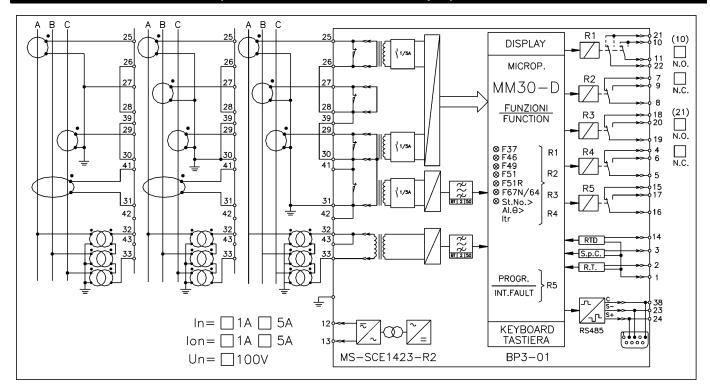
CE EMC Compatibility (EN50081-2 - EN50082-2 - EN50263)

	Electromagnetic emission	EN55022 indus	trial environm	nent		
	Radiated electromagnetic field immunity test	IEC61000-4-3 ENV50204	level 3	80-1000MHz 900MHz/200Hz	10V/m 10V/m	
	Conducted disturbances immunity test	IEC61000-4-6	level 3	0.15-80MHz	10V	
	Electrostatic discharge test	IEC61000-4-2	level 4	6kV contact / 8kV	air	
	Power frequency magnetic test	IEC61000-4-8		1000A/m	50/60Hz	
	Pulse magnetic field	IEC61000-4-9		1000A/m, 8/20μs		
	Damped oscillatory magnetic field	IEC61000-4-10		100A/m, 0.1-1MHz	<u>.</u>	
	Electrical fast transient/burst	IEC61000-4-4	level 3	2kV, 5kHz		
	HF disturbance test with damped oscillatory wave (1MHz burst test)	IEC60255-22-1	class 3	400pps, 2,5kV (m.	c.), 1kV (d.m.)	
	Oscillatory waves (Ring waves)	IEC61000-4-12	level 4	4kV(c.m.), 2kV(d.n	n.)	
	Surge immunity test	IEC61000-4-5	level 4	2kV(c.m.), 1kV(d.n	n.)	
	Voltage interruptions	IEC60255-4-11				
	Resistance to vibration and shocks	IEC60255-21-1	C60255-21-1 - IEC60255-21-2 10-500Hz 1g			
				_	•	
	Accuracy at reference value of influencing factors	2% In 0,2% On 2% +/- 10ms	for measure) Э		
	Accuracy at reference value of influencing factors Rated Current	0,2% On	for times		<u> </u>	
		0,2% On 2% +/- 10ms	for times On = 1 or 5A			
	Rated Current	0,2% On 2% +/- 10ms In = 1 or 5A - 200 A for 1 sec; Phase : 0.01VA	for times On = 1 or 5A 10A continuo at In = 1A; 0.	Dus		
<u> </u>	Rated Current Current overload	0,2% On 2% +/- 10ms In = 1 or 5A - 200 A for 1 sec; Phase : 0.01VA	for times On = 1 or 5A 10A continuo at In = 1A; 0. A at On = 1A	ous 2VA at In = 5A .; 0.4VA at On = 5A		
	Rated Current Current overload Burden on current inputs	0,2% On 2% +/- 10ms In = 1 or 5A - 200 A for 1 sec; Phase : 0.01VA Neutral : 0.015V	for times On = 1 or 5A 10A continuo at In = 1A; 0. A at On = 1A rent on reque	ous 2VA at In = 5A .; 0.4VA at On = 5A		
	Rated Current Current overload Burden on current inputs Rated Voltage	0,2% On 2% +/- 10ms In = 1 or 5A - 200 A for 1 sec; Phase : 0.01VA Neutral : 0.015V Un = 100V (diffe	for times On = 1 or 5A 10A continuo at In = 1A; 0. A at On = 1A rent on reque	ous 2VA at In = 5A .; 0.4VA at On = 5A		
	Rated Current Current overload Burden on current inputs Rated Voltage Overload overload	0,2% On 2% +/- 10ms In = 1 or 5A - 200 A for 1 sec; Phase : 0.01VA Neutral : 0.015V Un = 100V (diffe 2 Un permanent	for times On = 1 or 5A 10A continuo at In = 1A; 0. A at On = 1A rent on reque	ous 2VA at In = 5A .; 0.4VA at On = 5A		

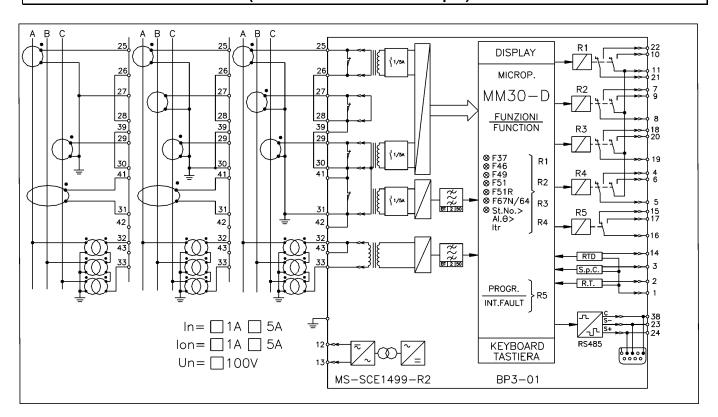
Microelettrica Scientifica S.p.A. - 20089 Rozzano (MI) - Italy - Via Alberelle, 56/68 Tel. (##39) 02 575731 - Fax (##39) 02 57510940

http://www.microelettrica.com e-mail: ute@microelettrica.com

The performances and the characteristics reported in this manual are not binding and can modified at any moment without notice



Doc. N° MO-0037-ING

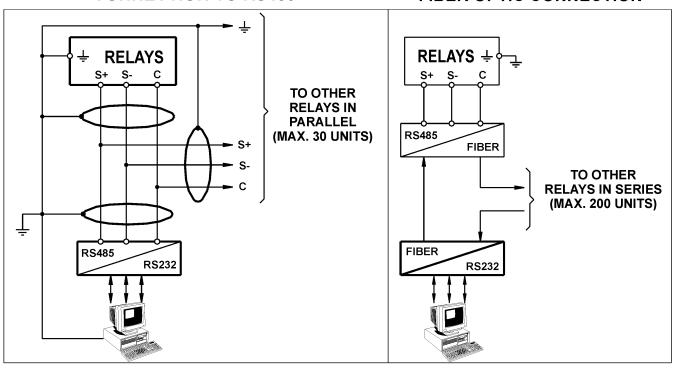

Rev. 4

Date 24.02.2003

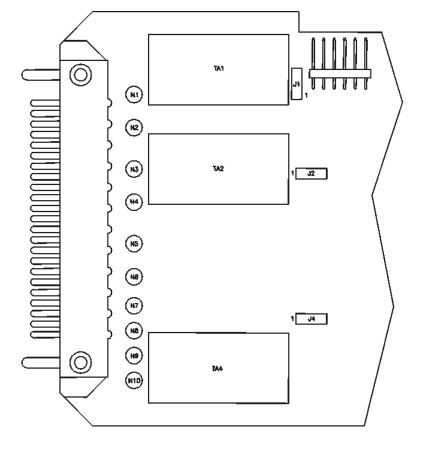
16. CONNECTION DIAGRAM (SCE1423 Rev.2 Standard Output)

16.1 - CONNECTION DIAGRAM (SCE1499 Rev.0 Double Output)

Doc. N° MO-0037-ING


Rev. 4

Date **24.02.2003**

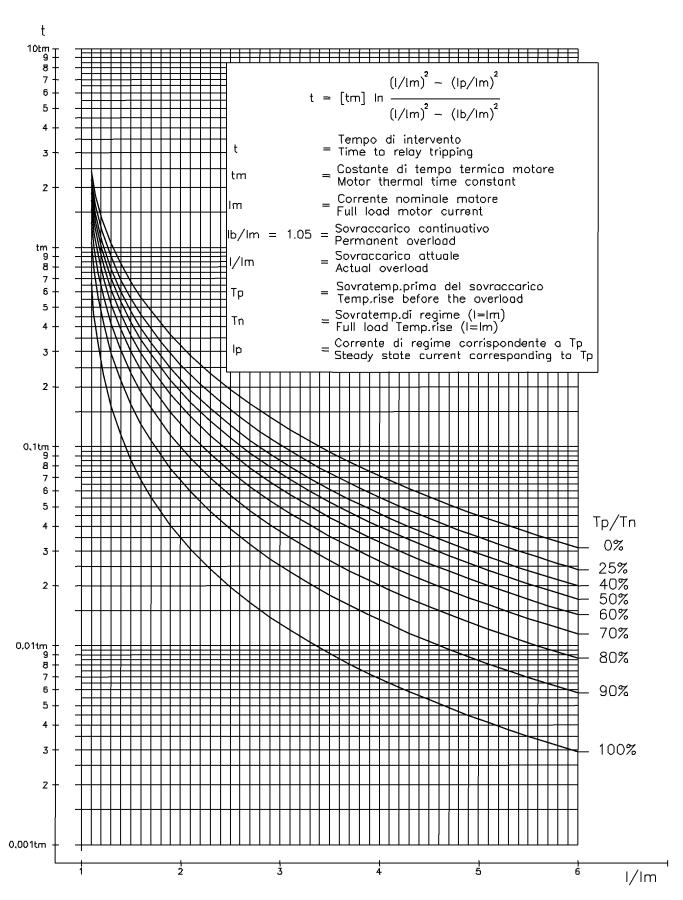

17. WIRING THE SERIAL COMMUNICATION BUS (SCE1309 Rev.0)

CONNECTION TO RS485

FIBER OPTIC CONNECTION

18. CHANGE PHASE CURRENT RATED INPUT 1 OR 5A

Connecto	or Jumper		
J1 Phase A	5A Rated Input 1A Current		
J2 Phase C	Rated input Current 5A 1A		
J4 Neutral	Rated input Current 5A 1A		

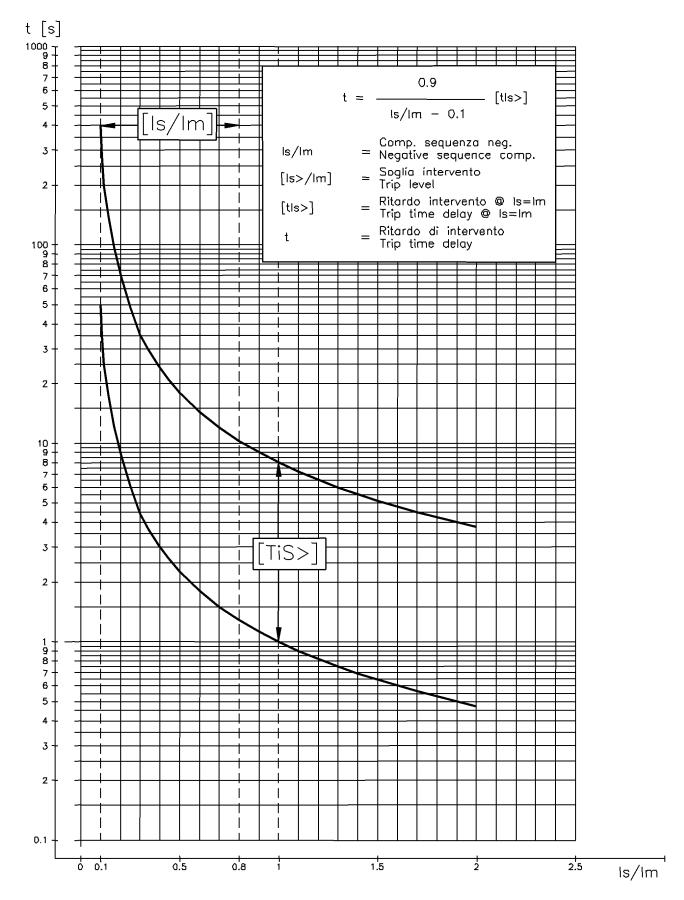


Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

19. THERMAL IMAGE CURVES (TU0249 Rev.1)



Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

20. INVERSE TIME UNBALANCE PROTECTION ELEMENT (TU0248 Rev.1)

Doc. N° MO-0037-ING

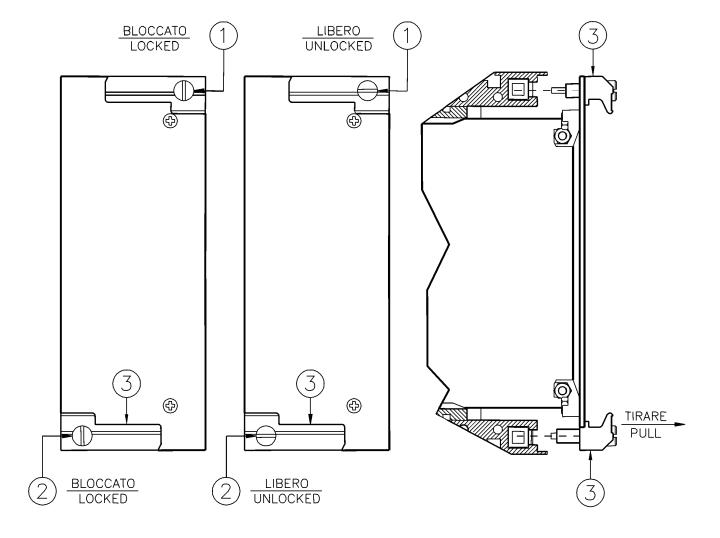
Rev. 4

Date **24.02.2003**

21. DIRECTION FOR PCB'S DRAW-OUT AND PLUG-IN

21.1 Draw-out

Rotate clockwise the screws @ and @ in the horizontal position of the screws-driver mark. Draw-out the PCB by pulling on the handle @

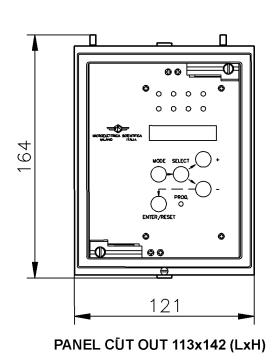

21.2 Plug-in

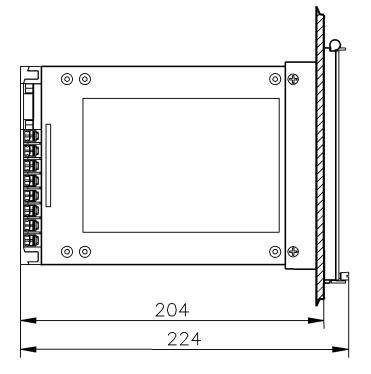
Rotate clockwise the screws ① and ②in the horizontal position of the screws-driver mark.

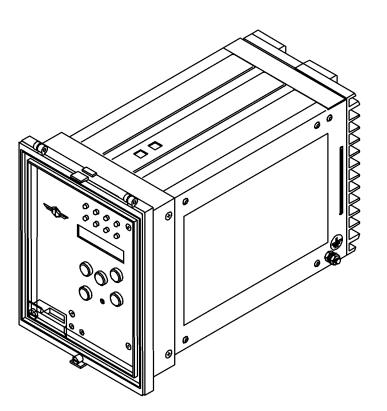
Slide-in the card on the rails provided inside the enclosure.

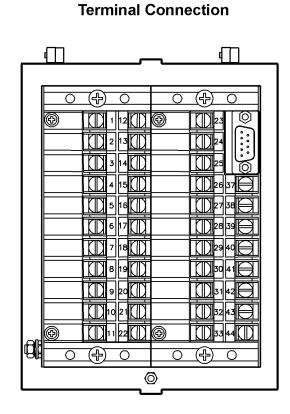
Plug-in the card completely and by pressing the handle to the closed position.

Rotate anticlockwise the screws ① and ② with the mark in the vertical position (locked).




Doc. N° MO-0037-ING


Rev. 4


Date 24.02.2003

22. OVERALL DIMENSIONS / MOUNTING

View of Rear

Doc. N° MO-0037-ING

Rev. 4

Date 24.02.2003

23. KEYBOARD OPERATIONAL DIAGRAM

Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

24. SETTING'S FORM

24. SETTING'S FORM								
Relay Typ	e MM30-D S		Circuit :					
Date :	1 1	FW Version:	Relay Serial Number :					
Power Su	pply 24V(-20%)) / 110V(+15%) a.c. 24V(-20%)	/ 125V(+20%	s) d.c.	Rated Curr	rent In:	□ 1A	☐ 5A
) / 220V(+15%) a.c. 90V(-20%)	/ 250V(+20%	b) d.c.	Rated Curr	rent On:	□ 1A	☐ 5A
					Rated Volt	age:		
	-	RELAY PROG	RAMMING		-		-	
			Settin	ng	Default	Actual	Test	Result
Variable		Description	Rang		Setting	Setting		Reset
xxXXXxx	Current date		Random	-	DDMMMYY			
XX:XX:XX	Current time		Random	-	HH:MM:SS			
NodAd	Identification number	for serial communication bus	1	-	1 - 250			
Fn	Mains frequency		50	Hz	50 - 60			
In	Rated primary curren	nt of the phase C.Ts.	500	Ар	1 - 9999			
On	Rated primary curren		500	Ap	1 - 9999			
lm	Motor full-load curren	nt	1.0	ln .	0.1 – 1.5			
Ist	Motor start-up curren	t	6	lm	0.5 – 10			
tst	Motor starting time		5	S	1 – 120			
lTr	Switch-over current of		0.5	lst	Dis-0.1-1			
tTr		from reduced to full voltage	6	s	0.5 – 50			
`''	operation during mot	or starting.	_	_		<u> </u>	1	
AUTO	SET? + ENTER	Automatic setting of all the foll				ne base of	f the settin	g of the
	Thormal time constan	at of motor while rupping .	previous	s parame	eters			
tm		nt of motor while running;	34	min	1 - 60			
un	tm is computed to allow at least one restarting with the motor at its rated full load temperature		34	111111	1 - 60			
to/tm		r thermal time constant	3		1 - 10			
Ta/n	Prealarm motor heati		90	%	50 - 110			
Ts/n	Motor restart heating		100	%	40 - 100			
lb	,	tinuous motor overload	1.05	Im	1 – 1.3			
StNo		allowed within the time tStNo	6	-	Dis-1-60			
tStNo	Time into which the S		60	m	1 - 60			
		e after tripping of the function						
tBSt	StNo	11 3	12	m	1-60-Rm			
ILR	Trip level of Locked F		2	lm	Dis-1-5			
tLR	Trip time delay of LR		5	s	1 – 25			
ls>		ime current unbalance	0.3	lm	Dis-0.1-0.8			
132	protection element		0.0		210 0.1 0.0			
tls>		verse time current unbalance	4	s	1 – 8			
	protection when I2=Ir	m rrent (no-load running) element	0.0	lm	Dis-0.15-1			
l< l>	•	<u> </u>	0.2 2	lm Ist	Dis-0.15-1			
tl>	Trip level of phase overcurrent element		0.1	S	0.05 - 1			
	Trip time delay of phase overcurrent element Minimum level of residual voltage for directional							
Uo>	operation of the Earth		20	V	2 - 25			
		y sansitivity displacement angle of the Earth Fault		0	0.050.5			
αο	directional element.	_	90		0–359-Dis			
0>	Trip level of earth fau	0.1	On	Dis-0.02-2		_		
tO>	Trip time delay of earth fault element		0.2	s	0.05 - 5			
	Maximum energization time of the output relays							
tBO		tantaneous functions I> and/or	0.15	s	0.05 - 0.5			
	O> Enabling of the input 1 – 14 for operation of RTD							
RTD	Enabling of the input function	1 – 14 for operation of RTD	OFF	-	OFF – ON			
		3 for operation of the Speed						
SpC	Control function	o for operation of the opeed	OFF	-	OFF – ON			
_	Clock synchronisation	n Time	r:		F 00 5:			
Tsyn		al between sync. signal.	Dis	m	5-60-Dis			
					-			

Doc. N° MO-0037-ING

Rev. 4

Date **24.02.2003**

					CONFIGURATION OF OUTPUT RELAY	YS			
De	Default Setting				Act	Actual Setting			
Protect. Element	Output Relays			ys	Description	Protect. Output Relay			
T>	1	-	-	-	Overload tripping	T>			
Та	-	-	-	-	Overload prealarm tripping	Та			
ITr	-	-	-	-	Starting switch-over tripping	lTr			
StNo	1	-	-	-	Start No limitation tripping	StNo			
ILR	1	-	-	-	Locked Rotor tripping	ILR			
tl2>	1	-	-	-	Time delayed unbalance tripping	tl2>			
l<	-	-	-	-	No load running tripping	l<			
 	-	-	-	-	Instantaneous overcurrent tripping	l>			
tl>	-	2	-	-	Time delayed overcurrent tripping	tl>			
0>	-	-	-	-	Instantaneous earth fault tripping	0>			
tO>	-	2	-	-	Time delayed earth fault tripping	tO>			
RT	-	-	-	-	Remote trip command (input 1-2)	RT			
1φ	1	-	-	-	Time delayed Phase loss tripping	1φ			

Commissioning Engineer : _	Date :	
Customer Witness :	Date :	